Long time behavior of solutions for a nonlinear evolution equation

2005 ◽  
Vol 63 (5-7) ◽  
pp. e1199-e1206 ◽  
Author(s):  
Kei Matsuura
2005 ◽  
Vol 5 (4) ◽  
Author(s):  
Igor D. Chueshov ◽  
Björn Schmalfuß

AbstractThe averaging method has been used to study random or non-autonomous systems on a fast time scale. We apply this method to a random abstract evolution equation on a fast time scale whose long time behavior can be characterized by a random attractor or a random inertial manifold. The main purpose is to show that the long-time behavior of such a system can be described by a deterministic evolution equation with averaged coefficients. Our first result provides an averaging result on finite time intervals which we use to show that under a dissipativity assumption the attractors of the fast time scale systems are upper semicontinuous when the scaling parameter goes to zero. Our main result deals with a global averaging procedure. Under some spectral gap condition we show that inertial manifolds of the fast time scale system tend to an inertial manifold of the averaged system when the scaling parameter goes to zero. These general results can be applied to semilinear parabolic differential equations containing a scaled ergodic noise on a fast time scale which includes scaled almost periodic motions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaopeng Zhao

AbstractIn this paper, we study the long time behavior of solution for the initial-boundary value problem of convective Cahn–Hilliard equation in a 2D case. We show that the equation has a global attractor in $H^{4}(\Omega )$ H 4 ( Ω ) when the initial value belongs to $H^{1}(\Omega )$ H 1 ( Ω ) .


2021 ◽  
pp. 1-27
Author(s):  
Ahmad Makki ◽  
Alain Miranville ◽  
Madalina Petcu

In this article, we are interested in the study of the well-posedness as well as of the long time behavior, in terms of finite-dimensional attractors, of a coupled Allen–Cahn/Cahn–Hilliard system associated with dynamic boundary conditions. In particular, we prove the existence of the global attractor with finite fractal dimension.


Sign in / Sign up

Export Citation Format

Share Document