Simons’ cone and equivariant maximization of the first p-Laplace eigenvalue

2017 ◽  
Vol 150 ◽  
pp. 210-233
Author(s):  
Sinan Ariturk
Keyword(s):  
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Shai M. Chester ◽  
Michael B. Green ◽  
Silviu S. Pufu ◽  
Yifan Wang ◽  
Congkao Wen

Abstract We study modular invariants arising in the four-point functions of the stress tensor multiplet operators of the $$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory, in the limit where N is taken to be large while the complexified Yang-Mills coupling τ is held fixed. The specific four-point functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the $$ \mathcal{N} $$ N = 2∗ theory with respect to the squashing parameter b and mass parameter m, evaluated at the values b = 1 and m = 0 that correspond to the $$ \mathcal{N} $$ N = 4 theory on a round sphere. At each order in the 1/N expansion, these fourth derivatives are modular invariant functions of (τ,$$ \overline{\tau} $$ τ ¯ ). We present evidence that at half-integer orders in 1/N , these modular invariants are linear combinations of non-holomorphic Eisenstein series, while at integer orders in 1/N, they are certain “generalized Eisenstein series” which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the low-energy expansion of the four-graviton amplitude in type IIB superstring theory in ten-dimensional flat space and have interesting implications for the structure of the analogous expansion in AdS5× S5.


2014 ◽  
Vol 12 (7) ◽  
Author(s):  
Qingfeng Sun

AbstractLet F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max {4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.


2019 ◽  
Vol 15 (07) ◽  
pp. 1487-1517 ◽  
Author(s):  
Haiwei Sun ◽  
Yangbo Ye

Let [Formula: see text] be a fixed self-dual Hecke–Maass form for [Formula: see text], and let [Formula: see text] be an even Hecke–Maass form for [Formula: see text] with Laplace eigenvalue [Formula: see text], [Formula: see text]. A subconvexity bound for [Formula: see text] is improved to [Formula: see text], and a subconvexity bound for [Formula: see text] is improved to [Formula: see text]. New techniques employed include an application of an asymptotic formula by Salazar and Ye [Spectral square moments of a resonance sum for Maass forms, Front. Math. China 12(5) (2017) 1183–1200] to make error terms negligible, an iterative algorithm to locate stationary point, and a non-trivial estimation of Kloosterman sums.


2015 ◽  
Vol 92 (2) ◽  
pp. 195-204 ◽  
Author(s):  
HENGCAI TANG

Let $\{{\it\phi}_{j}(z):j\geq 1\}$ be an orthonormal basis of Hecke–Maass cusp forms with Laplace eigenvalue $1/4+t_{j}^{2}$. Let ${\it\lambda}_{j}(n)$ be the $n$th Fourier coefficient of ${\it\phi}_{j}$ and $d_{3}(n)$ the divisor function of order three. In this paper, by the circle method and the Voronoi summation formula, the average value of the shifted convolution sum for $d_{3}(n)$ and ${\it\lambda}_{j}(n)$ is considered, leading to the estimate $$\begin{eqnarray}\displaystyle \mathop{\sum }_{n\leq X}d_{3}(n){\it\lambda}_{j}(n-1)\ll X^{29/30+{\it\varepsilon}}, & & \displaystyle \nonumber\end{eqnarray}$$ where the implied constant depends only on $t_{j}$ and ${\it\varepsilon}$.


Sign in / Sign up

Export Citation Format

Share Document