Upper bounds for the solar energy harvesting efficiency of nano-antennas

Nano Energy ◽  
2012 ◽  
Vol 1 (3) ◽  
pp. 494-502 ◽  
Author(s):  
Guy A.E. Vandenbosch ◽  
Zhongkun Ma
Author(s):  
Salah Obayya ◽  
Nihal Fayez Fahmy Areed ◽  
Mohamed Farhat O. Hameed ◽  
Mohamed Hussein Abdelrazik

The solar energy is able to supply humanity energy for almost another 1 billion years. Optical nano-antennas (ONAs) are an attractive technology for high efficiency, and low-cost solar cells. These devices can be classified to semiconductor nano-wires and metallic nano-antenna. Extensive studies have been carried out on ONAs to investigate their ability to harvest solar energy. Inspired by these studies, the scope of the chapter is to highlight the latest designs of the two main types of ONAs. The metallic nano-antennas are discussed based on the following points: plasmon, modeling, and performance of antenna designs using different configurations and materials. Moreover, the semiconductor nano-wires are studied thoroughly in terms of photonic crystals, antenna design with different patterns, nano-wire forms and materials. Also, the applications of ONAs and their fabrication aspects such as diode challenges are presented in detail. Finally, three novel designs of ONAs are presented and numerically simulated to maximize the harvesting efficiency.


Author(s):  
Salah Obayya ◽  
Nihal Fayez Fahmy Areed ◽  
Mohamed Farhat O. Hameed ◽  
Mohamed Hussein Abdelrazik

The solar energy is able to supply humanity energy for almost another 1 billion years. Optical nano-antennas (ONAs) are an attractive technology for high efficiency, and low-cost solar cells. These devices can be classified to semiconductor nano-wires and metallic nano-antenna. Extensive studies have been carried out on ONAs to investigate their ability to harvest solar energy. Inspired by these studies, the scope of the chapter is to highlight the latest designs of the two main types of ONAs. The metallic nano-antennas are discussed based on the following points: plasmon, modeling, and performance of antenna designs using different configurations and materials. Moreover, the semiconductor nano-wires are studied thoroughly in terms of photonic crystals, antenna design with different patterns, nano-wire forms and materials. Also, the applications of ONAs and their fabrication aspects such as diode challenges are presented in detail. Finally, three novel designs of ONAs are presented and numerically simulated to maximize the harvesting efficiency.


2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Bernardo Luiz R. Ribeiro ◽  
Yunxing Su ◽  
Quentin Guillaumin ◽  
Kenneth S. Breuer ◽  
Jennifer A. Franck

Sign in / Sign up

Export Citation Format

Share Document