wireless sensor nodes
Recently Published Documents


TOTAL DOCUMENTS

875
(FIVE YEARS 165)

H-INDEX

37
(FIVE YEARS 6)

Author(s):  
Ghaidaa Mohammad Esber, Mothanna Alkubeily, Samer Sulaiman Ghaidaa Mohammad Esber, Mothanna Alkubeily, Samer Sulaiman

Wireless sensor network simulation programs provide representation for an actual system, without needing to deploy real testbed which is highly constrained by the available budget, and the direct operations inside physical layer in most of these programs are hidden and work implicitly. This is what motivated us to build a kernel for a virtual simulation platform to be able to simulate protocol operations and algorithms at the node processing unit level, The proposed system aims to observe the execution of operations at the low level of the wireless sensor physical infrastructure with the ability to modify at this level. That give the improvers of wireless sensor nodes the ability to test their ideas without needing to use physical environment. We have built the functionality operations which are related to the platform kernel at several stages. We defined (as a first step) the essential operations inside a virtual microprocessor that uses a partial set pf MIPS instructions, and built the kernel of minimized virtual WSN simulator depending on the proposed microprocessor, that means we can add any number of nodes inside the GUI of the WSN simulator kernel, and these nodes use the proposed virtual microprocessor . Then we improved this platform by adding the instruction set of a real microprocessor that is used in wireless sensor network nodes. Finally, (and to ease and simplify the interaction operation between program GUI of the platform kernel and the user), we have built simplified compiler that allows user to deal with microprocessor GUI inside each node, and to clarify protocol and algorithm operations by a set of orders and functions without needing to deal with low level language (Assembly language) in a direct way. The simulation results have presented high flexibility and performance to this platform in observing the operation sequence inside wireless sensor nodes at assembly level, in addition to focus on some parameters that are related to microprocessor inside each node.


Author(s):  
Bassim Ali Oumran, Muhammad Abdullah Rastanawi Bassim Ali Oumran, Muhammad Abdullah Rastanawi

Wireless sensor nodes are generally deployed randomly in hostile, harsh and inaccessible environments. For this reason, the sensor nodes are supposed to operate over long periods of time without human intervention in order to extend the life of the network as much as possible, and also, it is not possible to restore the nodes or change their positions after their deployment, but by changing the transmitting power level and redeploying a new nodes above the deployment Previously, the network performance improves and we guarantee that the deployed nodes are not lost, and we also guarantee the operation of the network as a whole. The researcher has developed an algorithm "Adaptive transmission power level according to random deployment (ATPLRD)", where the presented algorithm includes determining the power levels relative to random deployment and identifying possible paths in the network in order to reach high interconnection between nodes to achieve the least number of published nodes at the lowest energy levels for the nodes, and also determines the most important nodes in the network whose exit or failure leads to the collapse of the network, and determining The boundary nodes of the network, as well as the weakest coverage areas, which represent gaps in the network, and from it determines the number of nodes needed to deploy within these gaps as few as possible. The results of the study showed that the imposed algorithm is effective in all of the above, and we focus in this research on adaptively determining the transmission energy levels of the nodes and reducing the number of deployed nodes that make the network work effectively and improving the quality of deployment by deploying additional nodes within the Reigon of Interest. The results showed achieving the least number of deployed nodes at the lowest transmission power level and achieving high interconnection between nodes. An overall energy consumption improvement of 31.25% was achieved.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 57
Author(s):  
Letícia C. Souza ◽  
Egidio R. Neto ◽  
Eduardo S. Lima ◽  
Arismar Cerqueira Sodré Junior

We report the experimental implementation of optically-powered wireless sensor nodes based on the power-over-fiber (PoF) technology, aiming at Industrial Internet of Things (IIoT) applications. This technique employs optical fibers to transmit power and is proposed as a solution to address the hazardous industrial environment challenges, e.g., electromagnetic interference and extreme temperatures. The proposed approach enables two different IIoT scenarios, in which wireless transmitter (TX) and receiver (RX) nodes are powered by a PoF system, enabling local and remote temperature data monitoring, with the purpose of achieving an intelligent and reliable process management in industrial production lines. In addition, the system performance is investigated as a function of the delivered electrical power and power transmission efficiency (PTE), which is the primary performance metric of a PoF system. We report 1.4 W electrical power deliver with PTE = 24%. Furthermore, we carry out a voltage stability analysis, demonstrating that the PoF system is capable of delivering stable voltage to a wide range of applications. Finally, we present a comparison of temperature measurements between the proposed approach and a conventional industrial programmable logic controller (PLC). The obtained results demonstrate that PoF might be considered as a potential technology to power and enhance the energy efficiency of IIoT sensing systems.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8332
Author(s):  
Iman Izadgoshasb

Information and communication technologies (ICT) are major features of smart cities. Smart sensing devices will benefit from 5 G and the Internet of Things, which will enable them to communicate in a safe and timely manner. However, the need for sustainable power sources and self-powered active sensing devices will continue to be a major issue in this sector. Since their discovery, piezoelectric energy harvesters have demonstrated a significant ability to power wireless sensor nodes, and their application in a wide range of systems, including intelligent transportation, smart healthcare, human-machine interfaces, and security systems, has been systematically investigated. Piezoelectric energy-harvesting systems are promising candidates not only for sustainably powering wireless sensor nodes but also for the development of intelligent and active self-powered sensors with a wide range of applications. In this paper, the various applications of piezoelectric energy harvesters in powering Internet of Things sensors and devices in smart cities are discussed and reviewed.


2021 ◽  
Author(s):  
◽  
Jonathan Paul Simon Olds

<p>We design, implement, and validate a unique permanently deployed land deformation monitoring system using small (brick sized), cheap (approximately $100 USD), batteryless, solar powered singleband GPS wireless sensor nodes. Both hardware and software were designed, implemented, and validated by us. Constraints by our hardware and application prompted us to design a unique distributed relative static positioning algorithm designed for intermittent poor quality phase observable measurements, for sites with high multipath and high node densities requiring good solution accuracies; the static solutions were calculated on a daily basis. Our algorithm used a quarter of the bandwidth that would typically be required for an RF link used for a comparable application. GPS on time was observed to vary greatly from as little as 0.5 hours a day in winter to over 8 hours a day and summer in one of our tests. Typical solution precision was 4 mm 2DRMS. Simulations predicted an undesirable slowly changing solution bias that would repeat every year.</p>


2021 ◽  
Author(s):  
◽  
Jonathan Paul Simon Olds

<p>We design, implement, and validate a unique permanently deployed land deformation monitoring system using small (brick sized), cheap (approximately $100 USD), batteryless, solar powered singleband GPS wireless sensor nodes. Both hardware and software were designed, implemented, and validated by us. Constraints by our hardware and application prompted us to design a unique distributed relative static positioning algorithm designed for intermittent poor quality phase observable measurements, for sites with high multipath and high node densities requiring good solution accuracies; the static solutions were calculated on a daily basis. Our algorithm used a quarter of the bandwidth that would typically be required for an RF link used for a comparable application. GPS on time was observed to vary greatly from as little as 0.5 hours a day in winter to over 8 hours a day and summer in one of our tests. Typical solution precision was 4 mm 2DRMS. Simulations predicted an undesirable slowly changing solution bias that would repeat every year.</p>


2021 ◽  
Vol 2 ◽  
Author(s):  
Zhuo Gao ◽  
Shiwei Wang ◽  
Yongfu Li ◽  
Mingyi Chen

Along with the industrialization and popularization of the wearable electronics, an increasing number of the wireless sensor nodes (WSNs) are deployed. Nevertheless, the conventional battery-based power supply system has no longer satisfied the requirement of large-scale WSNs in terms of battery life, which emerges the energy harvesting (EH) technique. In order to combine various of energy sources and drive multi-loads, the multi-input single-inductor multi-output (MISIMO) EH interface applied to wearable electronics is spotlighted. In this mini-review article, the solutions for improving power conversion efficiency (PCE) and output quality in MISIMO EH interface are summarized. Furthermore, the future trends of MISIMO EH interface are also presented.


Sign in / Sign up

Export Citation Format

Share Document