transport analysis
Recently Published Documents


TOTAL DOCUMENTS

599
(FIVE YEARS 124)

H-INDEX

34
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Noureen Kanwal ◽  
Riaz Hussain ◽  
Abdul Satar ◽  
Mohammed A. Assiri ◽  
Muhammad Imran ◽  
...  

Abstract AbstractFive new asymmetric NFA-based polymer solar cells i.e., N1-N5 are designed by doing modification in terminal groups of the acceptor part of experimentally synthesized reference molecule with (4,4,9,9-tetramethyl-4,9 dihydroselenopheno [2’,3’:5,6]-s-indaceno [1,2-b] thiophene) core. Frontier molecular orbital analysis is used to study their photovoltaic and optoelectronic properties. It confirmed the electrons' transportation from the donor to the acceptor part. It stated that all molecules have a lower bandgap than R and N2 has the lowest bandgap of 2.01 eV. The molecular orbital potential analysis confirmed the electron-withdrawing properties of the terminal groups. Optical properties studies evaluated maximum absorption with transition energies. All newly designed molecules N1-N5 show higher λmax values than R i.e., in the range of 680-740 nm with N2 having the highest λmax of 735 nm and lowest transition energy of 1.69 eV. Dipole moment studies showed that N3 has a maximum dipole moment of 7-40 D with all others having comparable values. TDM plots confirmed the electron shifting from donor to acceptor region. Reorganization energy analysis showed that N1 and N3 have the lowest reorganization energy values thus giving the highest electron mobilities. Voc calculated results of all molecules N1-N5 have lower values than R when coupled with PTB7-Th donor polymer. Charge transport analysis of N2 and PTB7-Th coupled molecule confirmed the acceptor type nature of our designed molecules.


2022 ◽  
Vol 1 (15) ◽  
pp. 145-149
Author(s):  
Ol'ga Lebedeva ◽  
Alena Dzhavakhadze

The article discusses the integration of geographic information system technology into urban transport planning and modeling. The problems facing GIS systems today and their solutions. The GIS software is being evaluated. Several applications of GIS methodology for urban transport analysis are described


Author(s):  
Aadhityan Arivazhagan ◽  
J. Meribah Jasmine ◽  
Hariharan Rajalakshmi Mohanraj ◽  
K. Janani Sivasankar ◽  
H. Bijo Joseph ◽  
...  

2022 ◽  
Vol 354 ◽  
pp. 00065
Author(s):  
Sorin Mihăilescu ◽  
Gabriel Praporgescu

Sustainable public transport requires finding a balance between economic and social objectives, ensuring the need for mobility without damaging environmental and health factors. At the level of the Petroșani Basin, the aim is to ensure the mobility of passengers as quickly as possible from one city to another (from east to west - Petrila, Petroșani, Aninoasa, Vulcan, Lupeni, Uricani) or from one part of the city to another, as the case may be. The study of population fluctuations by hours, on working or non-working days, per season allows the realization of a public transport that ensures the movement of people as quickly and safely as possible. The purpose of this paper is to study the way in which public transport is carried out in the Petroșani Basin, the means of transport used and the possibilities to improve this activity. In the context of sustainable mobility, the paper includes necessary aspects (transport demand, influencing factors, infrastructure) in order to conclude on the future of public transport in the Petroșani Basin.


Author(s):  
Serkan Erdem ◽  
Cenk Onan

In zones separated by doors with many entrances and exits, it is crucial in terms of energy consumption to protect the conditioned air in the indoor environment from the effects of outside air. The increase in door dimensions and opening frequency make this effect even more evident. Various methods are used to prevent leakage of outside air into the indoor environment. In this study, we investigated the effects of using air curtains on energy consumption during the cooling season in a factory building. The door width and height in this building, which has a high story height, were also large. These 26 doors must remain open all the time because of the production process. With a transient model developed on Transient System Simulation Tool (TRNSYS) coupled with Contaminant Transport Analysis Software (CONTAM), we showed the effects of using the air curtains in different climate conditions. As a result, we demonstrated that using air curtains will provide great savings, especially in cities with high cooling requirements.


Author(s):  
Saif-ur- Rehman ◽  
Nazir Ahmad Mir ◽  
Muhammad Farooq ◽  
Naila Rafiq ◽  
Shakeel Ahmad

In this attempt, we investigate the mixed convection in Sutterby fluid flow based on boundary layer approximation. Heat transport analysis is composed of stratification and thermal radiative phenomena. The system of non-linear PDEs is transformed into coupled ODEs. Convergent series approximations are evaluated via homotopic technique. Influence of various pertinent parameters is sketched and graphically analyzed. It is found that horizontal velocity increments for higher mixed convection parameter. The radiation parameter has a similar relation with temperature whereas the stratification parameter shows opposite behavior for temperature field.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009466
Author(s):  
Stephen Zhang ◽  
Anton Afanassiev ◽  
Laura Greenstreet ◽  
Tetsuya Matsumoto ◽  
Geoffrey Schiebinger

Understanding how cells change their identity and behaviour in living systems is an important question in many fields of biology. The problem of inferring cell trajectories from single-cell measurements has been a major topic in the single-cell analysis community, with different methods developed for equilibrium and non-equilibrium systems (e.g. haematopoeisis vs. embryonic development). We show that optimal transport analysis, a technique originally designed for analysing time-courses, may also be applied to infer cellular trajectories from a single snapshot of a population in equilibrium. Therefore, optimal transport provides a unified approach to inferring trajectories that is applicable to both stationary and non-stationary systems. Our method, StationaryOT, is mathematically motivated in a natural way from the hypothesis of a Waddington’s epigenetic landscape. We implement StationaryOT as a software package and demonstrate its efficacy in applications to simulated data as well as single-cell data from Arabidopsis thaliana root development.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1814
Author(s):  
Apipa Wanasathop ◽  
Priya B Patel ◽  
Hyojin A. Choi ◽  
S. Kevin Li

The buccal mucosa provides an alternative route of drug delivery that can be more beneficial compared to other administration routes. Although numerous studies and reviews have been published on buccal drug delivery, an extensive review of the permeability data is not available. Understanding the buccal mucosa barrier could provide insights into the approaches to effective drug delivery and optimization of dosage forms. This paper provides a review on the permeability of the buccal mucosa. The intrinsic permeability coefficients of porcine buccal mucosa were collected. Large variability was observed among the published permeability data. The permeability coefficients were then analyzed using a model involving parallel lipoidal and polar transport pathways. For the lipoidal pathway, a correlation was observed between the permeability coefficients and permeant octanol/water partition coefficients (Kow) and molecular weight (MW) in a subset of the permeability data under specific conditions. The permeability analysis suggested that the buccal permeation barrier was less lipophilic than octanol. For the polar pathway and macromolecules, a correlation was observed between the permeability coefficients and permeant MW. The hindered transport analysis suggested an effective pore radius of 1.5 to 3 nm for the buccal membrane barrier.


Sign in / Sign up

Export Citation Format

Share Document