Portland Cement-TiO2 triboelectric nanogenerator for robust large-scale mechanical energy harvesting and instantaneous motion sensor applications

Nano Energy ◽  
2020 ◽  
Vol 74 ◽  
pp. 104802
Author(s):  
Jirapan Sintusiri ◽  
Viyada Harnchana ◽  
Vittaya Amornkitbamrung ◽  
Ampol Wongsa ◽  
Prinya Chindaprasirt
Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6949
Author(s):  
Jiaqi Li ◽  
Jie Chen ◽  
Hengyu Guo

Throughout the world, wind energy is widely distributed as one of the most universal energy sources in nature, containing a gigantic reserve of renewable and green energy. At present, the main way to capture wind energy is to use an electromagnetic generator (EMG), but this technology has many limitations; notably, energy conversion efficiency is relatively low in irregular environments or when there is only a gentle breeze. A triboelectric nanogenerator (TENG), which is based on the coupling effect of triboelectrification and electrostatic induction, has obvious advantages for mechanical energy conversion in some specific situations. This review focuses on wind energy harvesting by TENG. First, the basic principles of TENG and existing devices’ working modes are introduced. Second, the latest research into wind energy-related TENG is summarized from the perspectives of structure design, self-power sensors and systems. Then, the potential for large-scale application and hybridization with other energy harvesting technologies is discussed. Finally, future trends and remaining challenges are anticipated and proposed.


2020 ◽  
Author(s):  
Zhihao Zhao ◽  
Yejing Dai ◽  
Di Liu ◽  
Linglin Zhou ◽  
Shaoxin Li ◽  
...  

Abstract As a new-era of energy harvesting technology, triboelectric nanogenerator (TENG) has been invented to convert randomly distributed mechanical energy into electric power for Internet of Things (IoTs) and artificial intelligence (AI) applications. Enhancement of the triboelectric charge density is crucial for its large-scale commercialization. Here, a microstructure-designed direct-current TENG (MDC-TENG) with rationally patterned electrode structure is presented to enhance its effective surface charge density by increasing the efficiency of contact electrification, which achieves a record high charge density of ~5.4 mC m-2 (more than 2 times of the best value reported). The MDC-TENG realizes both the miniaturized device and high output performance. Meanwhile, its effective charge density can be further improved as the device size increases. Our work not only provides a miniaturization strategy of TENG for the application in IoTs and AI as energy supply or self-powered sensor, but also presents a paradigm shift of the large-scale energy harvesting by TENGs.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhihao Zhao ◽  
Yejing Dai ◽  
Di Liu ◽  
Linglin Zhou ◽  
Shaoxin Li ◽  
...  

AbstractAs a new-era of energy harvesting technology, the enhancement of triboelectric charge density of triboelectric nanogenerator (TENG) is always crucial for its large-scale application on Internet of Things (IoTs) and artificial intelligence (AI). Here, a microstructure-designed direct-current TENG (MDC-TENG) with rationally patterned electrode structure is presented to enhance its effective surface charge density by increasing the efficiency of contact electrification. Thus, the MDC-TENG achieves a record high charge density of ~5.4 mC m−2, which is over 2-fold the state-of-art of AC-TENGs and over 10-fold compared to previous DC-TENGs. The MDC-TENG realizes both the miniaturized device and high output performance. Meanwhile, its effective charge density can be further improved as the device size increases. Our work not only provides a miniaturization strategy of TENG for the application in IoTs and AI as energy supply or self-powered sensor, but also presents a paradigm shift for large-scale energy harvesting by TENGs.


2020 ◽  
Vol 35 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Dongdong Jiang ◽  
Chi Zhang ◽  
Guoxu Liu ◽  
Wenjian Li ◽  
Tiaozhao Bu ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
pp. 1601255 ◽  
Author(s):  
Shu Wen Chen ◽  
Xia Cao ◽  
Ning Wang ◽  
Long Ma ◽  
Hui Rui Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document