A survey of transfer learning for collaborative recommendation with auxiliary data

2016 ◽  
Vol 177 ◽  
pp. 447-453 ◽  
Author(s):  
Weike Pan
2021 ◽  
Author(s):  
Zinan Lin ◽  
Dugang Liu ◽  
Weike Pan ◽  
Zhong Ming

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Yang Liu ◽  
Zhaoyang Lu ◽  
Jing Li ◽  
Chao Yao ◽  
Yanzi Deng

Recently, infrared human action recognition has attracted increasing attention for it has many advantages over visible light, that is, being robust to illumination change and shadows. However, the infrared action data is limited until now, which degrades the performance of infrared action recognition. Motivated by the idea of transfer learning, an infrared human action recognition framework using auxiliary data from visible light is proposed to solve the problem of limited infrared action data. In the proposed framework, we first construct a novel Cross-Dataset Feature Alignment and Generalization (CDFAG) framework to map the infrared data and visible light data into a common feature space, where Kernel Manifold Alignment (KEMA) and a dual aligned-to-generalized encoders (AGE) model are employed to represent the feature. Then, a support vector machine (SVM) is trained, using both the infrared data and visible light data, and can classify the features derived from infrared data. The proposed method is evaluated on InfAR, which is a publicly available infrared human action dataset. To build up auxiliary data, we set up a novel visible light action dataset XD145. Experimental results show that the proposed method can achieve state-of-the-art performance compared with several transfer learning and domain adaptation methods.


2016 ◽  
Vol 6 (2) ◽  
pp. 1-21 ◽  
Author(s):  
Weike Pan ◽  
Qiang Yang ◽  
Yuchao Duan ◽  
Zhong Ming

2019 ◽  
Author(s):  
Qi Yuan ◽  
Alejandro Santana-Bonilla ◽  
Martijn Zwijnenburg ◽  
Kim Jelfs

<p>The chemical space for novel electronic donor-acceptor oligomers with targeted properties was explored using deep generative models and transfer learning. A General Recurrent Neural Network model was trained from the ChEMBL database to generate chemically valid SMILES strings. The parameters of the General Recurrent Neural Network were fine-tuned via transfer learning using the electronic donor-acceptor database from the Computational Material Repository to generate novel donor-acceptor oligomers. Six different transfer learning models were developed with different subsets of the donor-acceptor database as training sets. We concluded that electronic properties such as HOMO-LUMO gaps and dipole moments of the training sets can be learned using the SMILES representation with deep generative models, and that the chemical space of the training sets can be efficiently explored. This approach identified approximately 1700 new molecules that have promising electronic properties (HOMO-LUMO gap <2 eV and dipole moment <2 Debye), 6-times more than in the original database. Amongst the molecular transformations, the deep generative model has learned how to produce novel molecules by trading off between selected atomic substitutions (such as halogenation or methylation) and molecular features such as the spatial extension of the oligomer. The method can be extended as a plausible source of new chemical combinations to effectively explore the chemical space for targeted properties.</p>


2014 ◽  
Author(s):  
Hiroshi Kanayama ◽  
Youngja Park ◽  
Yuta Tsuboi ◽  
Dongmook Yi
Keyword(s):  

2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


2007 ◽  
Author(s):  
Nicholas A. Gorski ◽  
John E. Laird
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document