Euclidean distance estimation in incomplete datasets

2017 ◽  
Vol 248 ◽  
pp. 11-18 ◽  
Author(s):  
Diego P.P. Mesquita ◽  
João P.P. Gomes ◽  
Amauri H. Souza Junior ◽  
Juvêncio S. Nobre
2016 ◽  
Author(s):  
Matthew J Vavrek

Cluster analysis is one of the most commonly used methods in palaeoecological studies, particularly in studies investigating biogeographic patterns. Although a number of different clustering methods are widely used, the approach and underlying assumptions of many of these methods are quite different. For example, methods may be hierarchical or non-hierarchical in their approaches, and may use Euclidean distance or non-Euclidean indices to cluster the data. In order to assess the effectiveness of the different clustering methods as compared to one another, a simulation was designed that could assess each method over a range of both cluster distinctiveness and sampling intensity. Additionally, a non-hierarchical, non-Euclidean, iterative clustering method implemented in the R Statistical Language is described. This method, Non-Euclidean Relational Clustering (NERC), creates distinct clusters by dividing the data set in order to maximize the average similarity within each cluster, identifying clusters in which each data point is on average more similar to those within its own group than to those in any other group. While all the methods performed well with clearly differentiated and well-sampled datasets, when data are less than ideal the linkage methods perform poorly compared to non-Euclidean based k-means and the NERC method. Based on this analysis, Unweighted Pair Group Method with Arithmetic Mean and neighbor joining methods are less reliable with incomplete datasets like those found in palaeobiological analyses, and the k-means and NERC methods should be used in their place.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3142 ◽  
Author(s):  
Sai Krishna Pathi ◽  
Andrey Kiselev ◽  
Annica Kristoffersson ◽  
Dirk Repsilber ◽  
Amy Loutfi

Estimating distances between people and robots plays a crucial role in understanding social Human–Robot Interaction (HRI) from an egocentric view. It is a key step if robots should engage in social interactions, and to collaborate with people as part of human–robot teams. For distance estimation between a person and a robot, different sensors can be employed, and the number of challenges to be addressed by the distance estimation methods rise with the simplicity of the technology of a sensor. In the case of estimating distances using individual images from a single camera in a egocentric position, it is often required that individuals in the scene are facing the camera, do not occlude each other, and are fairly visible so specific facial or body features can be identified. In this paper, we propose a novel method for estimating distances between a robot and people using single images from a single egocentric camera. The method is based on previously proven 2D pose estimation, which allows partial occlusions, cluttered background, and relatively low resolution. The method estimates distance with respect to the camera based on the Euclidean distance between ear and torso of people in the image plane. Ear and torso characteristic points has been selected based on their relatively high visibility regardless of a person orientation and a certain degree of uniformity with regard to the age and gender. Experimental validation demonstrates effectiveness of the proposed method.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1720 ◽  
Author(s):  
Matthew J. Vavrek

Cluster analysis is one of the most commonly used methods in palaeoecological studies, particularly in studies investigating biogeographic patterns. Although a number of different clustering methods are widely used, the approach and underlying assumptions of many of these methods are quite different. For example, methods may be hierarchical or non-hierarchical in their approaches, and may use Euclidean distance or non-Euclidean indices to cluster the data. In order to assess the effectiveness of the different clustering methods as compared to one another, a simulation was designed that could assess each method over a range of both cluster distinctiveness and sampling intensity. Additionally, a non-hierarchical, non-Euclidean, iterative clustering method implemented in the R Statistical Language is described. This method, Non-Euclidean Relational Clustering (NERC), creates distinct clusters by dividing the data set in order to maximize the average similarity within each cluster, identifying clusters in which each data point is on average more similar to those within its own group than to those in any other group. While all the methods performed well with clearly differentiated and well-sampled datasets, when data are less than ideal the linkage methods perform poorly compared to non-Euclidean basedk-means and the NERC method. Based on this analysis, Unweighted Pair Group Method with Arithmetic Mean and neighbor joining methods are less reliable with incomplete datasets like those found in palaeobiological analyses, and thek-means and NERC methods should be used in their place.


Author(s):  
Girdhar Gopal Ladha ◽  
Ravi Kumar Singh Pippal

In this paper an efficient distance estimation and centroid selection based on k-means clustering for small and large dataset. Data pre-processing was performed first on the dataset. For the complete study and analysis PIMA Indian diabetes dataset was considered. After pre-processing distance and centroid estimation was performed. It includes initial selection based on randomization and then centroids updations were performed till the iterations or epochs determined. Distance measures used here are Euclidean distance (Ed), Pearson Coefficient distance (PCd), Chebyshev distance (Csd) and Canberra distance (Cad). The results indicate that all the distance algorithms performed approximately well in case of clustering but in terms of time Cad outperforms in comparison to other algorithms.


1989 ◽  
Vol 41 (2) ◽  
pp. 215-233 ◽  
Author(s):  
Timothy P. McNamara ◽  
L. Lynn LeSueur

Four experiments investigated the representation and integration in memory of spatial and nonspatial relations. Subjects learned two-dimensional spatial arrays in which critical pairs of object names were semantically related (Experiment 1), semantically and episodically related (Experiment 2), or just episodically related (Experiments 3a and 3b). Episodic relatedness was established in a paired-associate learning task that preceded array learning. After learning an array, subjects participated in two tasks: item recognition, in which the measure of interest was priming; and distance estimation. Priming in item recognition was sensitive to the Euclidean distance between object names and, for neighbouring locations, to nonspatial relations. Errors in distance estimations varied as a function of distance but were unaffected by nonspatial relations. These and other results indicated that nonspatial relations influenced the probability of encoding spatial relations between locations but did not lead to distorted spatial memories.


2021 ◽  
Author(s):  
Misun Kim ◽  
Christian F Doeller

Terrains in a 3D world can be undulating. Yet, most prior research has exclusively investigated spatial representations on a flat surface, leaving a 2D cognitive map as the dominant model in the field. Here, we investigated whether humans represent a curved surface by building a dimension-reduced flattened 2D map or a full 3D map. Participants learned the location of objects positioned on a flat and curved surface in a virtual environment by driving on the surface (Experiment 1), driving and looking vertically (Experiment 2), or flying (Experiment 3). Subsequently, they were asked to retrieve either the path distance or the 3D Euclidean distance between the objects. Path distance estimation was good overall, but we found a significant underestimation bias for the path distance on the curve, suggesting an influence of potential 3D shortcuts, even though participants were only driving on the surface. Euclidean distance estimation was better when participants were exposed more to the global 3D structure of the environment by looking and flying. These results suggest that the representation of the 2D manifold, embedded in a 3D world, is neither purely 2D nor 3D. Rather, it is flexible and dependent on the behavioral experience and demand.


2016 ◽  
Author(s):  
Matthew J Vavrek

Cluster analysis is one of the most commonly used methods in palaeoecological studies, particularly in studies investigating biogeographic patterns. Although a number of different clustering methods are widely used, the approach and underlying assumptions of many of these methods are quite different. For example, methods may be hierarchical or non-hierarchical in their approaches, and may use Euclidean distance or non-Euclidean indices to cluster the data. In order to assess the effectiveness of the different clustering methods as compared to one another, a simulation was designed that could assess each method over a range of both cluster distinctiveness and sampling intensity. Additionally, a non-hierarchical, non-Euclidean, iterative clustering method implemented in the R Statistical Language is described. This method, Non-Euclidean Relational Clustering (NERC), creates distinct clusters by dividing the data set in order to maximize the average similarity within each cluster, identifying clusters in which each data point is on average more similar to those within its own group than to those in any other group. While all the methods performed well with clearly differentiated and well-sampled datasets, when data are less than ideal the linkage methods perform poorly compared to non-Euclidean based k-means and the NERC method. Based on this analysis, Unweighted Pair Group Method with Arithmetic Mean and neighbor joining methods are less reliable with incomplete datasets like those found in palaeobiological analyses, and the k-means and NERC methods should be used in their place.


2012 ◽  
Author(s):  
Matthew E. Jacovina ◽  
David N. Rapp
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document