biogeographic patterns
Recently Published Documents


TOTAL DOCUMENTS

532
(FIVE YEARS 182)

H-INDEX

55
(FIVE YEARS 6)

CATENA ◽  
2022 ◽  
Vol 211 ◽  
pp. 106026
Author(s):  
Yulong Duan ◽  
Xuyang Wang ◽  
Lilong Wang ◽  
Jie Lian ◽  
Wanfu Wang ◽  
...  

Author(s):  
Jie Kong ◽  
Lei Wang ◽  
Cai Lin ◽  
Fangfang Kuang ◽  
Xiwu Zhou ◽  
...  

Bacteria and microeukaryotes are extremely diverse groups in the ocean, where they regulate elemental cycling and energy flow. Studies of marine microbial ecology have benefited greatly from the rapid progress that has been made in genomic sequencing and theoretical microbial ecology.


Author(s):  
li jianwei ◽  
Sun Xiaoqian ◽  
Li Ming ◽  
Zou Jiying ◽  
Bian Hongfeng

It is of great interest to elucidate the biogeographic patterns of soil microorganisms and their driving forces, which is fundamental to predicting alterations in microbial-mediated functions arising from environment changes. Although the vertical movement of dissolved organic matter (DOM) drives the cycle of nutrients such as soil carbon but, in the restored ecosystem, the relationship between DOM and soil microbial nutrient utilization remains to be determined. Here, we investigated the changes of soil microbial community at 0-40 cm depth profile in three stages (10-, 30-, 50-years) of succession in Larix olgensis plantations and the fluorescence spectrum composition of DOM. With the increase of soil depth, the signal source of microorganisms increases. In a coniferous forest soil environment, the possible main source of DOM in deep soil is the production of microbial metabolism. Difficulty in the decomposition of organic matter determines the distribution and composition of microorganisms. Increasing forest age makes bacteria and fungi more specific and bacterial-fungal associations greater. Overall, our work contributes to the understanding of factors underlying microbial community distribution in plantation forests and the importance of DOM quality in building microbial communities.


2022 ◽  
Author(s):  
Ignacio Ramos-Gutierrez ◽  
Juan Carlos Moreno Saiz ◽  
Mario Fernandez-Mazuecos

The preference of certain plant species for gypsum soils leads to disjunct population structures that are thought to generate island-like dynamics potentially influencing biogeographic patterns at multiple evolutionary scales. Here, we study the evolutionary and biogeographic history of Nepeta hispanica, a western Mediterranean plant associated with gypsum soils and displaying a patchy distribution with populations very distant from each other. Three approaches were used: (a) interspecific phylogenetic analyses based on nuclear DNA sequences of the ITS region to unveil the relationships and times of divergence between N. hispanica and its closest relatives; (b) phylogeographic analyses using plastid DNA regions trnS-trnG and psbJ-petA to evaluate the degree of genetic isolation between populations of N. hispanica, their relationships and their genetic diversity; and (c) ecological niche modelling to evaluate historical distributional changes. Results reveal that N. hispanica belongs to an eastern Mediterranean and Asian clade diversified in arid environments since the Miocene-Pliocene. This species represents the only extant lineage of this clade that colonized the western Mediterranean, probably through the northern Mediterranean coast (southern Europe). Present Iberian populations display a high plastid genetic diversity and, even if geographically distant from each other, they are highly connected according to the distribution of plastid haplotypes and lineages. This can be explained by a scenario involving a complex history of back-and-forth colonisation events, facilitated by a relative stability of suitable conditions for the species across the Iberian Peninsula throughout the Quaternary.


2022 ◽  
Vol 9 ◽  
Author(s):  
Matti A. Niissalo ◽  
Elliot M. Gardner ◽  
Gillian S. Khew ◽  
Otakar Šída ◽  
Axel Dalberg Poulsen ◽  
...  

Lowiaceae (order Zingiberales) is a small family of forest herbs in Southeast Asia. All species belong to the genus Orchidantha. They are known for possessing orchid-like flowers that are smelly, apparently mimicking dead animals, feces, or mushrooms. Little is known of the biogeographic patterns or character evolution of the family. We sampled the family extensively, including many recently discovered species, and reconstructed the phylogeny of the family using HybSeq with Lowiaceae-specific RNA baits. Our phylogenetic reconstructions confirm that the family is most closely related to Strelitziaceae, and that species with dark, foul-smelling flowers form a grade in which a clade of species with paler flowers are embedded. The pale-flowered species produce a distinct odor, resembling edible mushrooms. Apart from a single species, the species from Borneo form a clade, and the same is true for Indochinese species. The remaining species form a more widespread clade. A biogeographic analysis shows that the distribution of Lowiaceae can explained by vicariance and gradual dispersal from a shared ancestral range of Borneo and Indochina. There is no evidence of long-distance dispersal, only a later extension in distribution to Peninsular Malaysia which coincides with the presence of a land bridge. Different directions of spread are possible, but none require long-distance dispersal. The results are consistent with the geological history of Southeast Asia. In particular, the relatively early isolation between Indochina and Borneo could be explained by the presence of a sea barrier that developed 10–15 MYA, and the continuous movement of plant species between Borneo and Peninsular Malaysia could be explained by a land bridge that existed until c. 5 MYA. The lack of an extensive land bridge with a suitable habitat may explain the absence of this genus from Sumatra and other Indonesian islands aside from Borneo. The strict reliance on a continuous habitat for the range expansion of Lowiaceae can be explained by their fruits and seeds, which lack obvious adaptations for long-distance dispersal. The inability to disperse to new areas may also explain why the extant species have very restricted distributions.


2021 ◽  
Author(s):  
Jorge A. Mandussí Montiel-Molina ◽  
Jason P. Sexton ◽  
A. Carolin Frank ◽  
J. Michael Beman

AbstractBiogeographic patterns in microorganisms are poorly understood, despite the importance of microbial communities for a range of ecosystem processes. Our knowledge of microbial ecology and biogeography is particularly deficient in rare and threatened ecosystems. We tested for three ecological patterns in microbial community composition within ephemeral wetlands—vernal pools—located across Baja California (Mexico) and California (USA): (1) habitat filtering; (2) a latitudinal diversity gradient; and (3) distance decay in community composition. Paired water and soil samples were collected along a latitudinal transect of vernal pools, and bacterial and archaeal communities were characterized using 16S rDNA sequencing. We identified two main microbial communities, with one community present in the soil matrix that included archaeal and bacterial soil taxa, and another community present in the overlying water that was dominated by common freshwater bacterial taxa. Aquatic microbial communities were more diverse in the north, and displayed a significant but inverted latitudinal diversity pattern. Aquatic communities also exhibited a significant distance-decay pattern, with geographic proximity, and precipitation explaining part of the community variation. Collectively these results indicate greater sensitivity to spatial and environmental variation in vernal pool aquatic microbial communities than in soil microbial communities. We conclude that vernal pool aquatic microbial communities can display distribution patterns similar to those exhibited by larger organisms, but differ in some key aspects, such as the latitudinal gradient in diversity.


2021 ◽  
Vol 46 (4) ◽  
pp. 998-1010
Author(s):  
Javier Jauregui-Lazo ◽  
Daniel Potter

Abstract— Acaena (Rosaceae) is the most complex and ecologically variable genus in Sanguisorbinae. Although it has been the subject of several taxonomic treatments, the largest phylogenetic analysis to date only sampled a small fraction of the total global diversity (five to seven out of 45 to 50 species). This study included most of the species to elucidate the phylogenetic relationships of Acaena and biogeographic patterns in Sanguisorbinae. Phylogenetic analyses of non-coding nuclear (ITS region) and chloroplast (trnL-F) DNA sequence markers using maximum likelihood and Bayesian analyses suggested that Acaena is a paraphyletic group with species of Margyricarpus and Tetraglochin nested within it. We identified strong support for eight subclades that are geographically or taxonomically structured. Nevertheless, the species-level relationships within subclades are still uncertain, which may be due to rapid diversification and lack of informative characters in the markers used. Sanguisorbinae, a primarily Southern Hemisphere clade, exhibits a classic Gondwana disjunct distribution. This current distribution is explained primarily by eight long-distance dispersal events. Our results suggested that Sanguisorbinae split into Cliffortia and Acaena around 13.6 mya. While Cliffortia diversified in southern South Africa, Acaena experienced several migration events in the Southern Hemisphere. Our estimation of the ancestral range suggested that Acaena likely originated in South Africa, followed by migration and subsequent diversification into southern South America. From there, the genus migrated to New Zealand, throughout the Andes, and to tropical areas in Central America, reaching as far north as California. Chile and New Zealand are the main sources of propagules for dispersal as well as the greatest diversity for the genus. The evolutionary relationships of species in Acaena combine a history of rapid diversifications, long-distance dispersals, and genetic variation within some taxa. Further research should be undertaken to clarify the infraspecific classification of A. magellanica.


2021 ◽  
Author(s):  
Michelle R. Gaither ◽  
Joseph D. DiBattista ◽  
Matthieu Leray ◽  
Sophie Heyden

2021 ◽  
Author(s):  
Michael T France ◽  
Sarah E Brown ◽  
anne marie rompalo ◽  
Rebecca M Brotman ◽  
Jacques Ravel

It has been suggested that the human microbiome might be vertically transmitted from mother to offspring and that early colonizers may play a critical role in development of the immune system. Studies have shown limited support for the vertical transmission of the intestinal microbiota but the derivation of the vaginal microbiota remains largely unknown. Although the vaginal microbiota of children and reproductive age cis women differ in composition, the vaginal microbiota could be vertically transmitted. To determine whether there was any support for this hypothesis, we examined the vaginal microbiota of daughter-mother pairs from the Baltimore metropolitan area (ages 14-27, 32-51; n=39). We assessed whether the daughter’s microbiota was similar in composition to their mother’s using metataxonomics. Permutation tests revealed that while some pairs did have similar vaginal microbiota, the degree of similarity did not exceed that expected by chance. Genome-resolved metagenomics was used to identify shared bacterial strains in a subset of the families (n=22). We found a small number of bacterial strains that were shared between mother-daughter pairs but identified more shared strains between individuals from different families, indicating that vaginal bacteria may display biogeographic patterns. Earlier-in-life studies are needed to demonstrate vertical transmission of the vaginal microbiota.


Sign in / Sign up

Export Citation Format

Share Document