Effects of spinal and peripheral nerve lesions on the intersegmental synchronization of the spontaneous activity of dorsal horn neurons in the cat lumbosacral spinal cord

2004 ◽  
Vol 361 (1-3) ◽  
pp. 102-105 ◽  
Author(s):  
C.A. Garcı́a ◽  
D. Chávez ◽  
I. Jiménez ◽  
P. Rudomin
Peptides ◽  
1985 ◽  
Vol 6 ◽  
pp. 249-256 ◽  
Author(s):  
A.M. Di Giulio ◽  
F. Borella ◽  
P. Mantegazza ◽  
J.-S. Hong ◽  
C. Panozzo ◽  
...  

1990 ◽  
Vol 110 (3) ◽  
pp. 248-257 ◽  
Author(s):  
Marion Murray ◽  
Shwun-De Wang ◽  
Michael E. Goldberger ◽  
Pat Levitt

2005 ◽  
Vol 102 (1) ◽  
pp. 152-164 ◽  
Author(s):  
Jungang Wang ◽  
Mikito Kawamata ◽  
Akiyoshi Namiki

Background To gain a better understanding of spinal cord injury (SCI)-induced central neuropathic pain, the authors investigated changes in properties of spinal dorsal horn neurons located rostrally and caudally to the lesion and their sensitivity to morphine in rats after SCI. Methods The right spinal cord of Sprague-Dawley rats was hemisected at the level of L2. At 10 to 14 days after the SCI, when mechanical hyperalgesia/allodynia had fully developed, spontaneous activity and evoked responses to mechanical stimuli of wide-dynamic-range (WDR) and high-threshold neurons rostral and caudal to the lesion were recorded. Effects of cumulative doses of systemic (0.1-3 mg/kg) and spinal (0.1-5 microg) administration of morphine on spontaneous activity and evoked responses to the stimuli of the neurons were evaluated. Results Spontaneous activity significantly increased in WDR neurons both rostral and caudal to the SCI site, but high-frequency background discharges with burst patterns were only observed in neurons rostral to the SCI site. Significant increases in responses to the mechanical stimuli were seen both in WDR and high-threshold neurons located both rostrally and caudally to the lesion. The responses to nonnoxious and noxious stimuli were significantly greater in caudal WDR neurons than in rostral WDR neurons. In contrast, the responses to pinch stimuli were significantly higher in rostral high-threshold neurons than those in caudal high-threshold neurons. Systemically administered morphine had a greater effect on responses to nonnoxious and noxious stimuli of rostral WDR neurons than those of caudal WDR neurons. Spinally administered morphine significantly suppressed responses of WDR neurons in SCI animals to nonnoxious stimuli compared with those in sham-operated control animals. Conclusions The findings suggest that changes in properties of spinal dorsal horn neurons after SCI are caused by different mechanisms, depending on the classification of the neurons and their segmental locations.


2015 ◽  
Vol 11 ◽  
pp. s12990-015-0059 ◽  
Author(s):  
Yasukuni Kiyoyuki ◽  
Wataru Taniguchi ◽  
Masamichi Okubo ◽  
Hiroki Yamanaka ◽  
Kimiko Kobayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document