wdr neurons
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 5)

H-INDEX

31
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Magda Chafai ◽  
Ariane Delrocq ◽  
Perrine Inquimbert ◽  
Ludivine Pidoux ◽  
Kevin Delanoe ◽  
...  

Dorsal horn of the spinal cord is an important crossroad of pain neuraxis, especially for the neuronal plasticity mechanisms that can lead to chronic pain states. Windup is a well-known spinal pain facilitation process initially described several decades ago, but which exact mechanism is still not fully understood. Here, we combine both ex vivo and in vivo electrophysiological recordings of spinal neurons with computational modelling to demonstrate a role for ASIC1a-containing channels in the windup process. Spinal application of the ASIC1a inhibitory venom peptides mambalgin-1 and psalmotoxin-1 (PcTx1) significantly reduces the ability of deep wide dynamic range (WDR) neurons to develop windup in vivo. All deep WDR-like neurons recorded from spinal slices exhibit an ASIC current with biophysical and pharmacological characteristics consistent with functional expression of ASIC1a/ASIC2 heteromeric channels. A computational model of WDR neuron supplemented with heteromeric ASIC1a/ASIC2 channel parameters accurately reproduces the experimental data, further supporting a positive contribution of these channels to windup. It also predicts a calcium-dependent windup decrease for elevated ASIC conductances, a phenomenon that was experimentally validated using either a combination of calcium-activated potassium channel inhibitory peptides (apamin and iberiotoxin), or the Texas coral snake ASIC-activating toxin (MitTx). This study demonstrates a possible dual contribution to windup of calcium permeable ASIC1a/ASIC2 channels in deep laminae projecting neurons, promoting it upon moderate channel activity, but ultimately leading to calcium-dependent windup inhibition associated to potassium channels when activity increases.


Author(s):  
Mehdi Sadeghi ◽  

Introduction: The modality of γ-aminobutyric acid receptors (GABAA) in control of dorsal horn neuronal excitability and inhibition of sensory information is ambiguous. The aim of the present study was to investigate the expression of GABAA receptor and the effects of its agonist muscimol on wide dynamic range (WDR) neuronal activity in the chronic constriction injury (CCI) model of neuropathic pain. Methods: Adult male Wistar rats weighing 200 to 250 g were used for the induction of CCI neuropathy. 14 days after surgery, muscimol (0.5, 1, and 2 mg/kg i.p.) was injected. Then, the behavioral tests were performed. Thereafter, the animals were sacrificed, and the lumbar segments of the spinal cords were collected for Western blot analysis of the GABAA receptor α1 subunit expression. The electrophysiological properties of WDR neurons were studied by single unit recordings in separate groups on the 14th day after CCI. Results: The outcomes indicated the development of thermal hyperalgesia and mechanical allodynia after neuropathy; nonetheless, the expression of GABAA receptor α1 subunit did not change significantly. Moreover, the evoked responses of the WDR neurons to electrical, mechanical, and thermal stimuli were significantly increased. 14 days after CCI, muscimol administration decreased thermal hyperalgesia, mechanical allodynia, and hyper-responsiveness of the WDR neurons in CCI rats. Conclusion: It confirms that the modulation of the spinal GABAA receptors after nerve injury can offer further insights to design new therapeutic agents in order to reduce the neuropathic pain symptoms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mariacristina Mazzitelli ◽  
Kendall Marshall ◽  
Andrew Pham ◽  
Guangchen Ji ◽  
Volker Neugebauer

The amygdala is an important neural substrate for the emotional–affective dimension of pain and modulation of pain. The central nucleus (CeA) serves major amygdala output functions and receives nociceptive and affected–related information from the spino-parabrachial and lateral–basolateral amygdala (LA–BLA) networks. The CeA is a major site of extra–hypothalamic expression of corticotropin releasing factor (CRF, also known as corticotropin releasing hormone, CRH), and amygdala CRF neurons form widespread projections to target regions involved in behavioral and descending pain modulation. Here we explored the effects of modulating amygdala neurons on nociceptive processing in the spinal cord and on pain-like behaviors, using optogenetic activation or silencing of BLA to CeA projections and CeA–CRF neurons under normal conditions and in an acute pain model. Extracellular single unit recordings were made from spinal dorsal horn wide dynamic range (WDR) neurons, which respond more strongly to noxious than innocuous mechanical stimuli, in normal and arthritic adult rats (5–6 h postinduction of a kaolin/carrageenan–monoarthritis in the left knee). For optogenetic activation or silencing of CRF neurons, a Cre–inducible viral vector (DIO–AAV) encoding channelrhodopsin 2 (ChR2) or enhanced Natronomonas pharaonis halorhodopsin (eNpHR3.0) was injected stereotaxically into the right CeA of transgenic Crh–Cre rats. For optogenetic activation or silencing of BLA axon terminals in the CeA, a viral vector (AAV) encoding ChR2 or eNpHR3.0 under the control of the CaMKII promoter was injected stereotaxically into the right BLA of Sprague–Dawley rats. For wireless optical stimulation of ChR2 or eNpHR3.0 expressing CeA–CRF neurons or BLA–CeA axon terminals, an LED optic fiber was stereotaxically implanted into the right CeA. Optical activation of CeA–CRF neurons or of BLA axon terminals in the CeA increased the evoked responses of spinal WDR neurons and induced pain-like behaviors (hypersensitivity and vocalizations) under normal condition. Conversely, optical silencing of CeA–CRF neurons or of BLA axon terminals in the CeA decreased the evoked responses of spinal WDR neurons and vocalizations, but not hypersensitivity, in the arthritis pain model. These findings suggest that the amygdala can drive the activity of spinal cord neurons and pain-like behaviors under normal conditions and in a pain model.


Author(s):  
Mehdi Sadeghi ◽  
◽  
Homa Manaheji ◽  
Jalal Zaringhalam ◽  
Abbas Haghparast ◽  
...  

Introduction: The modality of γ-aminobutyric acid receptors (GABAA) in control of dorsal horn neuronal excitability and inhibition of sensory information is ambiguous. The aim of the present study was to investigate the expression of GABAA receptor and the effects of its agonist muscimol on wide dynamic range (WDR) neuronal activity in the chronic constriction injury (CCI) model of neuropathic pain. Methods: Adult male Wistar rats weighing 200 to 250 g were used for the induction of CCI neuropathy. 14 days after surgery, muscimol (0.5, 1, and 2 mg/kg i.p.) was injected. Then, the behavioral tests were performed. Thereafter, the animals were sacrificed, and the lumbar segments of the spinal cords were collected for Western blot analysis of the GABAA receptor α1 subunit expression. The electrophysiological properties of WDR neurons were studied by single unit recordings in separate groups on the 14th day after CCI. Results: The outcomes indicated the development of thermal hyperalgesia and mechanical allodynia after neuropathy; nonetheless, the expression of GABAA receptor α1 subunit did not change significantly. Moreover, the evoked responses of the WDR neurons to electrical, mechanical, and thermal stimuli were significantly increased. 14 days after CCI, muscimol administration decreased thermal hyperalgesia, mechanical allodynia, and hyper-responsiveness of the WDR neurons in CCI rats. Conclusion: It confirms that the modulation of the spinal GABAA receptors after nerve injury can offer further insights to design new therapeutic agents in order to reduce the neuropathic pain symptoms.


2020 ◽  
Vol 21 (18) ◽  
pp. 6524
Author(s):  
Meng Xue ◽  
Ya-Lan Sun ◽  
Yang-Yang Xia ◽  
Zhi-Hua Huang ◽  
Cheng Huang ◽  
...  

Neuropathic pain is more complex and severely affects the quality of patients’ life. However, the therapeutic strategy for neuropathic pain in the clinic is still limited. Previously we have reported that electroacupuncture (EA) has an attenuating effect on neuropathic pain induced by spared nerve injury (SNI), but its potential mechanisms remain to be further elucidated. In this study, we designed to determine whether BDNF/TrκB signaling cascade in the spinal cord is involved in the inhibitory effect of 2 Hz EA on neuropathic pain in SNI rats. The paw withdrawal threshold (PWT) of rats was used to detect SNI-induced mechanical hypersensitivity. The expression of BDNF/TrκB cascade in the spinal cord was evaluated by qRT-PCR and Western blot assay. The C-fiber-evoked discharges of wide dynamic range (WDR) neurons in spinal dorsal horn were applied to indicate the noxious response of WDR neurons. The results showed that 2 Hz EA significantly down-regulated the levels of BDNF and TrκB mRNA and protein expression in the spinal cord of SNI rats, along with ameliorating mechanical hypersensitivity. In addition, intrathecal injection of 100 ng BDNF, not only inhibited the analgesic effect of 2 Hz EA on pain hypersensitivity, but also reversed the decrease of BDNF and TrκB expression induced by 2 Hz EA. Moreover, 2 Hz EA obviously reduced the increase of C-fiber-evoked discharges of dorsal horn WDR neurons by SNI, but exogenous BDNF (100 ng) effectively reversed the inhibitory effect of 2 Hz EA on SNI rats, resulting in a remarkable improvement of excitability of dorsal horn WDR neurons in SNI rats. Taken together, these data suggested that 2 Hz EA alleviates mechanical hypersensitivity by blocking the spinal BDNF/TrκB signaling pathway-mediated central sensitization in SNI rats. Therefore, targeting BDNF/TrκB cascade in the spinal cord may be a potential mechanism of EA against neuropathic pain.


2018 ◽  
Vol 120 (4) ◽  
pp. 1893-1905 ◽  
Author(s):  
Steve McGaraughty ◽  
Katharine L. Chu ◽  
Jun Xu

This overview compares the activity of wide dynamic range (WDR) and nociceptive specific (NS) neurons located in the deep dorsal horn across different rat models of pathological pain and following modulation by diverse pharmacology. The data were collected by our group under the same experimental conditions over numerous studies to facilitate comparison. Spontaneous firing of WDR neurons was significantly elevated (>3.7 Hz) in models of neuropathic, inflammation, and osteoarthritic pain compared with naive animals (1.9 Hz) but was very low (<0.5 Hz) and remained unchanged in NS neurons. WDR responses to low-intensity mechanical stimulation were elevated in neuropathic and inflammation models. WDR responses to high-intensity stimuli were enhanced in inflammatory (heat) and osteoarthritis (mechanical) models. NS responses to high-intensity stimulation did not change relative to control in any model examined. Several therapeutic agents reduced both evoked and spontaneous firing of WDR neurons (e.g., TRPV1, TRPV3, Nav1.7, Nav1.8, P2X7, P2X3, H3), other targets affected neither evoked nor spontaneous firing of WDR neurons (e.g., H4, TRPM8, KCNQ2/3), and some only modulated evoked (e.g, ASIC1a, Cav3.2) whereas others decreased evoked but affected spontaneous activity only in specific models (e.g., TRPA1, CB2). Spontaneous firing of WDR neurons was not altered by any peripherally restricted compound or by direct administration of compounds to peripheral sites, although the same compounds decreased evoked activity. Compounds acting centrally were effective against this endpoint. The diversity of incoming/modulating inputs to the deep dorsal horn positions this group of neurons as an important intersection within the pain system to validate novel therapeutics. NEW & NOTEWORTHY Data from multiple individual experiments were combined to show firing properties of wide dynamic range and nociceptive specific spinal dorsal horn neurons across varied pathological pain models. This high-powered analysis describes the sensitization following different forms of injury. Effects of diverse pharmacology on these neurons is also summarized from published and unpublished data all recorded under the same conditions to facilitate comparison. This comprehensive overview describes the function and utility of these neurons.


2017 ◽  
Vol 118 (5) ◽  
pp. 2727-2744 ◽  
Author(s):  
Sergey G. Khasabov ◽  
Patrick Malecha ◽  
Joseph Noack ◽  
Janneta Tabakov ◽  
Glenn J. Giesler ◽  
...  

Neurons in the rostral ventromedial medulla (RVM) project to the spinal cord and are involved in descending modulation of pain. Several studies have shown that activation of neurokinin-1 (NK-1) receptors in the RVM produces hyperalgesia, although the underlying mechanisms are not clear. In parallel studies, we compared behavioral measures of hyperalgesia to electrophysiological responses of nociceptive dorsal horn neurons produced by activation of NK-1 receptors in the RVM. Injection of the selective NK-1 receptor agonist Sar9,Met(O2)11-substance P (SSP) into the RVM produced dose-dependent mechanical and heat hyperalgesia that was blocked by coadministration of the selective NK-1 receptor antagonist L-733,060. In electrophysiological studies, responses evoked by mechanical and heat stimuli were obtained from identified high-threshold (HT) and wide dynamic range (WDR) neurons. Injection of SSP into the RVM enhanced responses of WDR neurons, including identified neurons that project to the parabrachial area, to mechanical and heat stimuli. Since intraplantar injection of capsaicin produces robust hyperalgesia and sensitization of nociceptive spinal neurons, we examined whether this sensitization was dependent on NK-1 receptors in the RVM. Pretreatment with L-733,060 into the RVM blocked the sensitization of dorsal horn neurons produced by capsaicin. c-Fos labeling was used to determine the spatial distribution of dorsal horn neurons that were sensitized by NK-1 receptor activation in the RVM. Consistent with our electrophysiological results, administration of SSP into the RVM increased pinch-evoked c-Fos expression in the dorsal horn. It is suggested that targeting this descending pathway may be effective in reducing persistent pain. NEW & NOTEWORTHY It is known that activation of neurokinin-1 (NK-1) receptors in the rostral ventromedial medulla (RVM), a main output area for descending modulation of pain, produces hyperalgesia. Here we show that activation of NK-1 receptors produces hyperalgesia by sensitizing nociceptive dorsal horn neurons. Targeting this pathway at its origin or in the spinal cord may be an effective approach for pain management.


2017 ◽  
Vol 117 (3) ◽  
pp. 1200-1214 ◽  
Author(s):  
Boriss Sagalajev ◽  
Hanna Viisanen ◽  
Hong Wei ◽  
Antti Pertovaara

Stimulation of the secondary somatosensory cortex (S2) has attenuated pain in humans and inflammatory nociception in animals. Here we studied S2 stimulation-induced antinociception and its underlying mechanisms in an experimental animal model of neuropathy induced by spinal nerve ligation (SNL). Effect of S2 stimulation on heat-evoked limb withdrawal latency was assessed in lightly anesthetized rats that were divided into three groups based on prior surgery and monofilament testing before induction of anesthesia: 1) sham-operated group and 2) hypersensitive and 3) nonhypersensitive (mechanically) SNL groups. In a group of hypersensitive SNL animals, a 5-HT1A receptor agonist was microinjected into the rostroventromedial medulla (RVM) to assess whether autoinhibition of serotonergic cell bodies blocks antinociception. Additionally, effect of S2 stimulation on pronociceptive ON-cells and antinociceptive OFF-cells in the RVM or nociceptive spinal wide dynamic range (WDR) neurons were assessed in anesthetized hypersensitive SNL animals. S2 stimulation induced antinociception in hypersensitive but not in nonhypersensitive SNL or sham-operated animals. Antinociception was prevented by a 5-HT1A receptor agonist in the RVM. Antinociception was associated with decreased duration of heat-evoked response in RVM ON-cells. In spinal WDR neurons, heat-evoked discharge was delayed by S2 stimulation, and this antinociceptive effect was prevented by blocking spinal 5-HT1A receptors. The results indicate that S2 stimulation suppresses nociception in SNL animals if SNL is associated with tactile allodynia-like hypersensitivity. In hypersensitive SNL animals, S2 stimulation induces antinociception mediated by medullospinal serotonergic pathways acting on the spinal 5-HT1A receptor, and partly through reduction of the RVM ON-cell discharge. NEW & NOTEWORTHY Stimulation of S2 cortex, but not that of an adjacent cortical area, induced descending heat antinociception in rats with the spinal nerve ligation-induced model of neuropathy. Antinociception was bilateral, and it involved suppression of pronociceptive medullary cells and activation of serotonergic pathways that act on the spinal 5-HT1A receptor. S2 stimulation failed to induce descending antinociceptive effect in sham-operated controls or in nerve-ligated animals that had not developed mechanical hypersensitivity.


2016 ◽  
Vol 7;19 (7;9) ◽  
pp. 456-476
Author(s):  
Shi-yuan Xu

Background: Cancer-induced bone pain (CIBP) is a common chronic pain characterized by 2 components, ongoing pain and breakthrough pain. Tanshinone IIA (TSN IIA) is a bioactive constituent of the traditional Chinese medicine Danshen, which has been reported to have an antinociceptive effect on neuropathic and inflammatory pain through downregulation of the late proinflammatory cytokine high-mobility group protein B1 (HMGB1). Objective: To assess the antinociceptive effect of TSN IIA on CIBP. Study Design: A randomized, double-blind, controlled animal trial was performed. Setting: University lab in China. Methods: A rat CIBP model was established by injecting Walker 256 mammary gland carcinoma cells into the intramedullary cavity of the tibia. Both ongoing pain, e.g., flinching and guarding, and breakthrough pain, e.g., limb use and von Frey threshold, were evaluated. The effects of intraperitoneally administered TSN IIA on pain behavior and the expression levels of spinal HMGB1, interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 were determined. The effect of TSN IIA on the electrically evoked response of spinal wide-dynamic range (WDR) neurons was performed in vivo. Results: TSN IIA dose-dependently inhibited cancer-induced ongoing pain and breakthrough pain. The expression levels of spinal HMGB1 and other inflammatory factors (IL-1β, TNF-α, and IL-6) were increased in the rat model, but they were suppressed by TSN IIA in a dose-dependent manner. Moreover, TSN IIA significantly inhibited the neuronal responses of WDR neurons in spinal deep layers. Limitations: Further studies are warranted to ascertain how TSN IIA attenuates cancer-induced ongoing pain. Conclusions: Our results indicate that TSN IIA attenuates cancer-induced ongoing pain and breakthrough pain, possibly via suppression of central sensitization in CIBP rats. Therefore, we have provided strong evidence supporting TSN IIA as a potential and effective therapy for relieving CIBP. Key words: Cancer-induced bone pain, high-mobility group protein B1, Tanshinone IIA, ongoing pain, breakthrough pain


2016 ◽  
Vol 116 (1) ◽  
pp. 159-170 ◽  
Author(s):  
Ryan Patel ◽  
Anthony H. Dickenson

Neuropathic pain represents a substantial clinical challenge; understanding the underlying neural mechanisms and back-translation of therapeutics could aid targeting of treatments more effectively. The ventral posterior thalamus (VP) is the major termination site for the spinothalamic tract and relays nociceptive activity to the somatosensory cortex; however, under neuropathic conditions, it is unclear how hyperexcitability of spinal neurons converges onto thalamic relays. This study aimed to identify neural substrates of hypersensitivity and the influence of pregabalin on central processing. In vivo electrophysiology was performed to record from VP wide dynamic range (WDR) and nociceptive-specific (NS) neurons in anesthetized spinal nerve-ligated (SNL), sham-operated, and naive rats. In neuropathic rats, WDR neurons had elevated evoked responses to low- and high-intensity punctate mechanical stimuli, dynamic brushing, and innocuous and noxious cooling, but less so to heat stimulation, of the receptive field. NS neurons in SNL rats also displayed increased responses to noxious punctate mechanical stimulation, dynamic brushing, noxious cooling, and noxious heat. Additionally, WDR, but not NS, neurons in SNL rats exhibited substantially higher rates of spontaneous firing, which may correlate with ongoing pain. The ratio of WDR-to-NS neurons was comparable between SNL and naive/sham groups, suggesting relatively few NS neurons gain sensitivity to low-intensity stimuli leading to a “WDR phenotype.” After neuropathy was induced, the proportion of cold-sensitive WDR and NS neurons increased, supporting the suggestion that changes in frequency-dependent firing and population coding underlie cold hypersensitivity. In SNL rats, pregabalin inhibited mechanical and heat responses but not cold-evoked or elevated spontaneous activity.


Sign in / Sign up

Export Citation Format

Share Document