Inflammatory pain by carrageenan recruits low-frequency local field potential changes in the anterior cingulate cortex

2016 ◽  
Vol 632 ◽  
pp. 8-14 ◽  
Author(s):  
Amber L. Harris-Bozer ◽  
Yuan B. Peng
2008 ◽  
Vol 99 (2) ◽  
pp. 759-772 ◽  
Author(s):  
Erik E. Emeric ◽  
Joshua W. Brown ◽  
Melanie Leslie ◽  
Pierre Pouget ◽  
Veit Stuphorn ◽  
...  

We describe intracranial local field potentials (LFP) recorded in the anterior cingulate cortex (ACC) of macaque monkeys performing a saccade countermanding task. The most prominent feature at ∼70% of sites was greater negative polarity after errors than after rewarded correct trials. This negative polarity was also evoked in unrewarded correct trials. The LFP evoked by the visual target was much less polarized, and the weak presaccadic modulation was insufficient to control the initiation of saccades. When saccades were cancelled, LFP modulation decreased slightly with the magnitude of response conflict that corresponds to the coactivation of gaze-shifting and -holding neurons estimated from the probability of canceling. However, response time adjustments on subsequent trials were not correlated with LFP polarity on individual trials. The results provide clear evidence that error- and feedback-related, but not conflict-related, signals are carried by the LFP in the macaque ACC. Finding performance monitoring field potentials in the ACC of macaque monkeys establishes a bridge between event-related potential and functional brain-imaging studies in humans and neurophysiology studies in non-human primates.


2008 ◽  
Vol 4 ◽  
pp. 1744-8069-4-40 ◽  
Author(s):  
Long-Jun Wu ◽  
Hendrik W Steenland ◽  
Susan S Kim ◽  
Carolina Isiegas ◽  
Ted Abel ◽  
...  

2014 ◽  
Vol 111 (2) ◽  
pp. 258-272 ◽  
Author(s):  
Abigail Kalmbach ◽  
Jack Waters

Release of acetylcholine (ACh) in neocortex is important for learning, memory and attention tasks. The primary source of ACh in neocortex is axons ascending from the basal forebrain. Release of ACh from these axons evokes changes in the cortical local field potential (LFP), including a decline in low-frequency spectral power that is often referred to as desynchronization of the LFP and is thought to result from the activation of muscarinic ACh receptors. Using channelrhodopsin-2, we selectively stimulated the axons of only cholinergic basal forebrain neurons in primary somatosensory cortex of the urethane-anesthetized mouse while monitoring the LFP. Cholinergic stimulation caused desynchronization and two brief increases in higher-frequency power at stimulus onset and offset. Desynchronization (1–6 Hz) was localized, extending ≤ 1 mm from the edge of stimulation, and consisted of both nicotinic and muscarinic receptor-mediated components that were inhibited by mecamylamine and atropine, respectively. Hence we have identified a nicotinic receptor-mediated component to desynchronization. The increase in higher-frequency power (>10 Hz) at stimulus onset was also mediated by activation of nicotinic and muscarinic receptors. However, the increase in higher-frequency power (10–20 Hz) at stimulus offset was evoked by activation of muscarinic receptors and inhibited by activation of nicotinic receptors. We conclude that the activation of nicotinic and muscarinic ACh receptors in neocortex exerts several effects that are reflected in distinct frequency bands of the cortical LFP in urethane-anesthetized mice.


Sign in / Sign up

Export Citation Format

Share Document