Human gait recognition via deterministic learning

2012 ◽  
Vol 35 ◽  
pp. 92-102 ◽  
Author(s):  
Wei Zeng ◽  
Cong Wang

2020 ◽  
Vol 357 (4) ◽  
pp. 2471-2491 ◽  
Author(s):  
Muqing Deng ◽  
Tingchang Fan ◽  
Jiuwen Cao ◽  
Siu-Ying Fung ◽  
Jing Zhang




2013 ◽  
Vol 6 (2) ◽  
pp. 218-229 ◽  
Author(s):  
Wei Zeng ◽  
Cong Wang ◽  
Yuanqing Li


2016 ◽  
Vol 78 ◽  
pp. 56-63 ◽  
Author(s):  
Muqing Deng ◽  
Cong Wang ◽  
Qingfeng Chen


Author(s):  
Feifei Yang ◽  
Wenjie Si ◽  
Wei Zeng ◽  
Qian Wang


2010 ◽  
Vol 20 (1) ◽  
pp. 120-128 ◽  
Author(s):  
Md. Zia Uddin ◽  
Tae-Seong Kim ◽  
Jeong Tai Kim

Smart homes that are capable of home healthcare and e-Health services are receiving much attention due to their potential for better care of the elderly and disabled in an indoor environment. Recently the Center for Sustainable Healthy Buildings at Kyung Hee University has developed a novel indoor human activity recognition methodology based on depth imaging of a user’s activities. This system utilizes Independent Component Analysis to extract spatiotemporal features from a series of depth silhouettes of various activities. To recognise the activities from the spatiotemporal features, trained Hidden Markov Models of the activities would be used. In this study, this technique has been extended to recognise human gaits (including normal and abnormal). Since this system could be of great significance for the caring of the elderly, to promote and preserve their health and independence, the gait recognition system would be considered a primary function of the smart system for smart homes. The indoor gait recognition system is trained to detect abnormal gait patterns and generate warnings. The system works in real-time and is aimed to be installed at smart homes. This paper provides the information for further development of the system for their application in the future.



Author(s):  
Sankara Rao Palla ◽  
Gupteswar Sahu ◽  
Priyadarsan Parida
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document