Cognitive Computation
Latest Publications


TOTAL DOCUMENTS

948
(FIVE YEARS 508)

H-INDEX

48
(FIVE YEARS 24)

Published By Springer-Verlag

1866-9964, 1866-9956

Author(s):  
Anas M. Tahir ◽  
Yazan Qiblawey ◽  
Amith Khandakar ◽  
Tawsifur Rahman ◽  
Uzair Khurshid ◽  
...  

Author(s):  
Yangfan Zhou ◽  
Kaizhu Huang ◽  
Cheng Cheng ◽  
Xuguang Wang ◽  
Xin Liu

Author(s):  
Thomas Gargot ◽  
Dominique Archambault ◽  
Mohamed Chetouani ◽  
David Cohen ◽  
Wafa Johal ◽  
...  

Author(s):  
Anna Giabelli ◽  
Lorenzo Malandri ◽  
Fabio Mercorio ◽  
Mario Mezzanzanica ◽  
Navid Nobani
Keyword(s):  

Author(s):  
Indrajeet Kumar ◽  
Abhishek Kumar ◽  
V D Ambeth Kumar ◽  
Ramani Kannan ◽  
Vrince Vimal ◽  
...  

AbstractBreast tumors are from the common infections among women around the world. Classifying the various types of breast tumors contribute to treating breast tumors more efficiently. However, this classification task is often hindered by dense tissue patterns captured in mammograms. The present study has been proposed a dense tissue pattern characterization framework using deep neural network. A total of 322 mammograms belonging to the mini-MIAS dataset and 4880 mammograms from DDSM dataset have been taken, and an ROI of fixed size 224 × 224 pixels from each mammogram has been extracted. In this work, tedious experimentation has been executed using different combinations of training and testing sets using different activation function with AlexNet, ResNet-18 model. Data augmentation has been used to create a similar type of virtual image for proper training of the DL model. After that, the testing set is applied on the trained model to validate the proposed model. During experiments, four different activation functions ‘sigmoid’, ‘tanh’, ‘ReLu’, and ‘leakyReLu’ are used, and the outcome for each function has been reported. It has been found that activation function ‘ReLu’ perform always outstanding with respect to others. For each experiment, classification accuracy and kappa coefficient have been computed. The obtained accuracy and kappa value for MIAS dataset using ResNet-18 model is 91.3% and 0.803, respectively. For DDSM dataset, the accuracy of 92.3% and kappa coefficient value of 0.846 are achieved. After the combination of both dataset images, the achieved accuracy is 91.9%, and kappa coefficient value is 0.839 using ResNet-18 model. Finally, it has been concluded that the ResNet-18 model and ReLu activation function yield outstanding performance for the task.


Sign in / Sign up

Export Citation Format

Share Document