Facilitated activation of metabotropic glutamate receptors in cerebellar Purkinje cells in glutamate transporter EAAT4-deficient mice

2007 ◽  
Vol 59 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Osamu Nikkuni ◽  
Yukihiro Takayasu ◽  
Masae Iino ◽  
Kohichi Tanaka ◽  
Seiji Ozawa
1998 ◽  
Vol 80 (2) ◽  
pp. 520-528 ◽  
Author(s):  
Filippo Tempia ◽  
Maria Concetta Miniaci ◽  
Davide Anchisi ◽  
Piergiorgio Strata

Tempia, Filippo, Maria Concetta Miniaci, Davide Anchisi, and Piergiorgio Strata. Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells. J. Neurophysiol. 80: 520–528, 1998. In rat cerebellar slices, repetitive parallel fiber stimulation evokes an inward, postsynaptic current in Purkinje cells with a fast component mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors and a slower component mediated by metabotropic glutamate receptors (mGluR). The mGluR-mediated excitatory postsynaptic current (mGluR-EPSC) is evoked selectively by parallel fiber stimulation; climbing fiber stimulation is ineffective. The mGluR-EPSC is elicited most effectively with increasing frequencies of parallel fiber stimulation, from a threshold of 10 Hz to a maximum response at ∼100 Hz. The amplitude of the mGluR-EPSC is a linear function of the number of stimulus pulses without any apparent saturation, even with >10 pulses. Thus mGluRs at the parallel fiber-Purkinje cell synapse can function as linear detectors of the number of spikes in a burst of activity in parallel fibers. The mGluR-EPSC is present from postnatal day 15 and persists into adulthood. It is inhibited by the generic mGluR antagonist (RS)-a-methyl-4-carboxyphenylglycine and by the group I mGluR antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid at a concentration selective for mGluR1. Although the intracellular transduction pathway involves a G protein, the putative mediators of mGluR1 (phospholipase C and protein kinase C) are not directly involved, indicating that the mGluR-EPSC studied here is mediated by a different and still unidentified second-messenger pathway. Heparin, a nonselective antagonist of inositol-trisphosphate (IP3) receptors, has no significant effect on the mGluR-EPSC, suggesting that also IP3 might be not required for the response. Buffering intracellular Ca2+ with a high concentration of bis-( o-aminophenoxy)- N,N,N′,N′-tetraacetic acid partially inhibits the mGluR-EPSC, indicating that Ca2+ is not directly responsible for the response but that resting Ca2+ levels exert a tonic potentiating effect on the mGluR-EPSC.


2017 ◽  
Vol 115 ◽  
pp. 51-59 ◽  
Author(s):  
Serena Notartomaso ◽  
Giada Mascio ◽  
Pamela Scarselli ◽  
Katiuscia Martinello ◽  
Sergio Fucile ◽  
...  

2002 ◽  
Vol 87 (4) ◽  
pp. 1974-1980 ◽  
Author(s):  
W. Reichelt ◽  
T. Knöpfel

At the cerebellar parallel fiber-Purkinje cell synapse, isolated presynaptic activity induces fast excitatory postsynaptic currents via ionotropic glutamate receptors while repetitive, high-frequency, presynaptic activity can also induce a slow excitatory postsynaptic current that is mediated by metabotropic glutamate receptors (mGluR1-EPSC). Here we investigated the involvement of glutamate uptake in the expression of the mGluR1-EPSC. Inhibitors of glutamate uptake led to a large increase of the mGluR1-EPSC. d-aspartate (0.4 mM) andl(−)-threo-3-hydroxyaspartate (0.4 mM) increased the mGluR1-EPSC ∼4.5 and ∼9-fold, respectively, while dihydrokainic acid (1 mM), had no significant effect on the mGluR1-EPSC.d-aspartate (0.4 mM) shifted the concentration-response curve of the depression of the mGluR1-EPSC by the low-affinity mGluR1 antagonist ( S)-a-Methyl-4-carboxyphenylglycine [( S)-MCPG] to higher concentrations and decreased the stimulus intensity and the number of necessary stimuli to evoke an mGluR1-EPSC. Depression of the mGluR1-EPSC by rapid pressure application of ( S)-MCPG at varying time intervals after tetanic stimulation of the parallel fibers indicated that the glutamate concentration in the peri- and extrasynaptic space decayed with time constants of 36 and 316 ms under control conditions and with inhibition of glutamate uptake, respectively. These results show that expression of the slow mGluR-mediated excitatory postsynaptic current is controlled by glutamate transporter activity. Thus in contrast to fast glutamatergic synaptic transmission, metabotropic glutamate receptor-mediated transmission is critically dependent on the activity and capacity of glutamate uptake.


Sign in / Sign up

Export Citation Format

Share Document