Extracellular matrix regulates ocular dominance plasticity in the adult rat primary visual cortex

2010 ◽  
Vol 68 ◽  
pp. e151
Author(s):  
Takamitsu Natori ◽  
Yukio Komatsu ◽  
Kenji Kadomatsu
2017 ◽  
Vol 372 (1715) ◽  
pp. 20160504 ◽  
Author(s):  
Megumi Kaneko ◽  
Michael P. Stryker

Mechanisms thought of as homeostatic must exist to maintain neuronal activity in the brain within the dynamic range in which neurons can signal. Several distinct mechanisms have been demonstrated experimentally. Three mechanisms that act to restore levels of activity in the primary visual cortex of mice after occlusion and restoration of vision in one eye, which give rise to the phenomenon of ocular dominance plasticity, are discussed. The existence of different mechanisms raises the issue of how these mechanisms operate together to converge on the same set points of activity. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.


2019 ◽  
Vol 56 (9) ◽  
pp. 5987-5997 ◽  
Author(s):  
Elena Maria Boggio ◽  
Erich M. Ehlert ◽  
Leonardo Lupori ◽  
Elizabeth B. Moloney ◽  
Fred De Winter ◽  
...  

2019 ◽  
Vol 40 (4) ◽  
pp. 769-783 ◽  
Author(s):  
Christina A. Welsh ◽  
Céleste-Élise Stephany ◽  
Richard W. Sapp ◽  
Beth Stevens

1994 ◽  
Vol 6 (4) ◽  
pp. 615-621 ◽  
Author(s):  
Geoffrey J. Goodhill ◽  
David J. Willshaw

The elastic net (Durbin and Willshaw 1987) can account for the development of both topography and ocular dominance in the mapping from the lateral geniculate nucleus to primary visual cortex (Goodhill and Willshaw 1990). Here it is further shown for this model that (1) the overall pattern of stripes produced is strongly influenced by the shape of the cortex: in particular, stripes with a global order similar to that seen biologically can be produced under appropriate conditions, and (2) the observed changes in stripe width associated with monocular deprivation are reproduced in the model.


Sign in / Sign up

Export Citation Format

Share Document