Connectivity and signal intensity in the parieto-occipital cortex predicts top-down attentional effect in visual masking: An fMRI study based on individual differences

NeuroImage ◽  
2009 ◽  
Vol 45 (2) ◽  
pp. 587-597 ◽  
Author(s):  
Hiroyuki Tsubomi ◽  
Takashi Ikeda ◽  
Takashi Hanakawa ◽  
Nobuyuki Hirose ◽  
Hidenao Fukuyama ◽  
...  
NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S63
Author(s):  
VG van de Ven ◽  
B Jans ◽  
M Been ◽  
R Goebel ◽  
P de Weerd

2020 ◽  
Author(s):  
Julia W Y Kam ◽  
Randolph F Helfrich ◽  
Anne-Kristin Solbakk ◽  
Tor Endestad ◽  
Pål G Larsson ◽  
...  

Abstract Decades of electrophysiological research on top–down control converge on the role of the lateral frontal cortex in facilitating attention to behaviorally relevant external inputs. However, the involvement of frontal cortex in the top–down control of attention directed to the external versus internal environment remains poorly understood. To address this, we recorded intracranial electrocorticography while subjects directed their attention externally to tones and responded to infrequent target tones, or internally to their own thoughts while ignoring the tones. Our analyses focused on frontal and temporal cortices. We first computed the target effect, as indexed by the difference in high frequency activity (70–150 Hz) between target and standard tones. Importantly, we then compared the target effect between external and internal attention, reflecting a top–down attentional effect elicited by task demands, in each region of interest. Both frontal and temporal cortices showed target effects during external and internal attention, suggesting this effect is present irrespective of attention states. However, only the frontal cortex showed an enhanced target effect during external relative to internal attention. These findings provide electrophysiological evidence for top–down attentional modulation in the lateral frontal cortex, revealing preferential engagement with external attention.


2020 ◽  
Vol 225 ◽  
pp. 113085
Author(s):  
Maartje S. Spetter ◽  
Suzanne Higgs ◽  
Dirk Dolmans ◽  
Jason M. Thomas ◽  
Renate L.E.P. Reniers ◽  
...  

2007 ◽  
Vol 19 (2) ◽  
pp. 315-330 ◽  
Author(s):  
Kurt E. Weaver ◽  
Alexander A. Stevens

Visual deprivation early in life results in occipital cortical responsiveness across a broad range of perceptual and cognitive tasks. In the reorganized occipital cortex of early blind (EB) individuals, the relative lack of specificity for particular sensory stimuli and tasks suggests that attention effects may play a prominent role in these areas. We wished to establish whether occipital cortical areas in the EB were responsive to stimuli across sensory modalities (auditory, tactile) and whether these areas maintained or altered their activity as a function of selective attention. Using a three-stimulus oddball paradigm and event-related functional magnetic resonance imaging, auditory and tactile tasks presented separately demonstrated that several occipital regions of interest (ROIs) in the EB, but not sighted controls (SCs), responded to targets and task-irrelevant distracter stimuli of both modalities. When auditory and tactile stimuli were presented simultaneously with subjects alternating attention between sensory streams, only the calcarine sulcus continued to respond to stimuli in both modalities. In all other ROIs, responses to auditory targets were as large or larger than those observed in the auditory-alone condition, but responses to tactile targets were attenuated or abolished by the presence of unattended auditory stimuli. Both auditory and somatosensory cortices responded consistently to auditory and tactile targets, respectively. These results reveal mechanisms of orienting and selective attention within the visual cortex of EB individuals and suggest that mechanisms of enhancement and suppression interact asymmetrically on auditory and tactile streams during bimodal sensory presentation.


2009 ◽  
Vol 102 (6) ◽  
pp. 3461-3468 ◽  
Author(s):  
Yvonne J. Wong ◽  
Adrian J. Aldcroft ◽  
Mary-Ellen Large ◽  
Jody C. Culham ◽  
Tutis Vilis

We examined the role of temporal synchrony—the simultaneous appearance of visual features—in the perceptual and neural processes underlying object persistence. When a binding cue (such as color or motion) momentarily exposes an object from a background of similar elements, viewers remain aware of the object for several seconds before it perceptually fades into the background, a phenomenon known as object persistence. We showed that persistence from temporal stimulus synchrony, like that arising from motion and color, is associated with activation in the lateral occipital (LO) area, as measured by functional magnetic resonance imaging. We also compared the distribution of occipital cortex activity related to persistence to that of iconic visual memory. Although activation related to iconic memory was largely confined to LO, activation related to object persistence was present across V1 to LO, peaking in V3 and V4, regardless of the binding cue (temporal synchrony, motion, or color). Although persistence from motion cues was not associated with higher activation in the MT+ motion complex, persistence from color cues was associated with increased activation in V4. Taken together, these results demonstrate that although persistence is a form of visual memory, it relies on neural mechanisms different from those of iconic memory. That is, persistence not only activates LO in a cue-independent manner, it also recruits visual areas that may be necessary to maintain binding between object elements.


Sign in / Sign up

Export Citation Format

Share Document