scholarly journals Partial volume correction analysis for 11C-UCB-J PET studies of Alzheimer's disease

NeuroImage ◽  
2021 ◽  
pp. 118248
Author(s):  
Yihuan Lu ◽  
Takuya Toyonaga ◽  
Mika Naganawa ◽  
Jean-Dominique Gallezot ◽  
Ming-Kai Chen ◽  
...  
2010 ◽  
Vol 6 (4) ◽  
pp. S299
Author(s):  
Parnesh Raniga ◽  
Jurgen Fripp ◽  
Oscar Acosta ◽  
Pierrick Bourgeat ◽  
Cassandra Szoeke ◽  
...  

2011 ◽  
Vol 38 (6) ◽  
pp. 1104-1119 ◽  
Author(s):  
Benjamin A. Thomas ◽  
Kjell Erlandsson ◽  
Marc Modat ◽  
Lennart Thurfjell ◽  
Rik Vandenberghe ◽  
...  

2009 ◽  
Vol 5 (4S_Part_1) ◽  
pp. P20-P21
Author(s):  
Benjamin A. Thomas ◽  
Lennart Thurfjell ◽  
Juha O. Rinne ◽  
Sebastien Ourselin ◽  
Brian Hutton

2021 ◽  
Vol 13 ◽  
Author(s):  
Stefan J. Teipel ◽  
Martin Dyrba ◽  
Andrea Vergallo ◽  
Simone Lista ◽  
Marie Odile Habert ◽  
...  

Purpose: To test whether correcting for unspecific signal from the cerebral white matter increases the sensitivity of amyloid-PET for early stages of cerebral amyloidosis.Methods: We analyzed 18F-Florbetapir-PET and cerebrospinal fluid (CSF) Aβ42 data from 600 older individuals enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI), including people with normal cognition, mild cognitive impairment (MCI), and Alzheimer’s disease (AD) dementia. We determined whether three compartmental partial volume correction (PVC-3), explicitly modeling signal spill-in from white matter, significantly improved the association of CSF Aβ42 levels with global 18F-Florbetapir-PET values compared with standard processing without PVC (non-PVC) and a widely used two-compartmental PVC method (PVC-2). In additional voxel-wise analyses, we determined the sensitivity of PVC-3 compared with non-PVC and PVC-2 for detecting early regional amyloid build-up as modeled by decreasing CSF Aβ42 levels. For replication, we included an independent sample of 43 older individuals with subjective memory complaints from the INveStIGation of AlzHeimer’s PredicTors cohort (INSIGHT-preAD study).Results: In the ADNI sample, PVC-3 18F-Florbetapir-PET values normalized to whole cerebellum signal showed significantly stronger associations with CSF Aβ42 levels than non-PVC or PVC-2, particularly in the lower range of amyloid levels. These effects were replicated in the INSIGHT-preAD sample. PVC-3 18F-Florbetapir-PET data detected regional amyloid build-up already at higher (less abnormal) CSF Aβ42 levels than non-PVC or PVC-2 data.Conclusion: A PVC approach that explicitly models unspecific white matter binding improves the sensitivity of amyloid-PET for identifying the earliest stages of cerebral amyloid pathology which has implications for future primary prevention trials.


2014 ◽  
Vol 33 (2) ◽  
pp. 462-480 ◽  
Author(s):  
Frank Heckel ◽  
Hans Meine ◽  
Jan H. Moltz ◽  
Jan-Martin Kuhnigk ◽  
Johannes T. Heverhagen ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Keamogetswe Ramonaheng ◽  
Johannes A. van Staden ◽  
Hanlie du Raan

Abstract Background Different gamma camera calibration factor (CF) geometries have been proposed to convert SPECT data into units of activity concentration. However, no consensus has been reached on a standardised geometry. The CF is dependent on the selected geometry and is further affected by partial volume effects. This study investigated the effect of two CF geometries and their corresponding recovery coefficients (RCs) on the quantification accuracy of 177Lu SPECT images using Monte Carlo simulations. Methods The CF geometries investigated were (i) a radioactive-sphere surrounded by non-radioactive water (sphere-CF) and (ii) a cylindrical phantom uniformly filled with radioactive water (cylinder-CF). Recovery coefficients were obtained using the sphere-CF and cylinder-CF, yielding the sphere-RC and cylinder-RC values, respectively, for partial volume correction (PVC). The quantification accuracy was evaluated using four different-sized spheres (15.6–65.4 ml) and a kidney model with known activity concentrations inside a cylindrical, torso and patient phantom. Images were reconstructed with the 3D OS-EM algorithm incorporating attenuation, scatter and detector-response corrections. Segmentation was performed using the physical size and a small cylindrical volume inside the cylinder for the sphere-CF and cylinder-CF, respectively. Results The sphere quantification error (without PVC) was better for the sphere-CF (≤ − 5.54%) compared to the cylinder-CF (≤ − 20.90%), attributed to the similar geometry of the quantified and CF spheres. Partial volume correction yielded comparable results for the sphere-CF-RC (≤ 3.47%) and cylinder-CF-RC (≤ 3.53%). The accuracy of the kidney quantification was poorer (≤ 22.34%) for the sphere-CF without PVC compared to the cylinder-CF (≤ 2.44%). With PVC, the kidney quantification results improved and compared well for the sphere-CF-RC (≤ 3.50%) and the cylinder-CF-RC (≤ 3.45%). Conclusion The study demonstrated that upon careful selection of CF-RC combinations, comparable quantification errors (≤ 3.53%) were obtained between the sphere-CF-RC and cylinder-CF-RC, when all corrections were applied.


Sign in / Sign up

Export Citation Format

Share Document