scholarly journals Delta Opioid Receptors Presynaptically Regulate Cutaneous Mechanosensory Neuron Input to the Spinal Cord Dorsal Horn

Neuron ◽  
2014 ◽  
Vol 81 (6) ◽  
pp. 1443 ◽  
Author(s):  
Rita Bardoni ◽  
Vivianne L. Tawfik ◽  
Dong Wang ◽  
Amaury François ◽  
Carlos Solorzano ◽  
...  
Neuron ◽  
2014 ◽  
Vol 81 (6) ◽  
pp. 1312-1327 ◽  
Author(s):  
Rita Bardoni ◽  
Vivianne L. Tawfik ◽  
Dong Wang ◽  
Amaury François ◽  
Carlos Solorzano ◽  
...  

2002 ◽  
Vol 97 (6) ◽  
pp. 1602-1608 ◽  
Author(s):  
Shao-Rui Chen ◽  
Kristi L. Sweigart ◽  
Joan M. Lakoski ◽  
Hui-Lin Pan

Background The mechanisms of decreased spinal analgesic potency of morphine in neuropathic pain are not fully known. Agonist-stimulated [35S]GTPgammaS receptor autoradiography has been used to measure receptor activation of G proteins in vitro. Using this technique, we determined changes in the functional mu opioid receptors in the spinal dorsal horn in diabetic rats. Methods Rats were rendered diabetic with an intraperitoneal injection of streptozotocin. The lumbar spinal cord was obtained from age-matched normal and diabetic rats 4 weeks after streptozotocin treatment. [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin (DAMGO, 10 microm)-stimulated [35S]GTPgammaS binding was performed in both tissue sections and isolated membranes. Results The DAMGO-stimulated [35S]GTPgammaS binding in the spinal dorsal horn was significantly reduced (approximately 37%) in diabetic rats compared with normal rats. However, [35S]GTPgammaS bindings in the spinal dorsal horn stimulated by other G protein-coupled receptor agonists, including [D-Pen2,D-Pen5]-enkephalin, R(-)N6-(2-phenylisopropyl)-adenosine, and WIN-55212, were not significantly altered in diabetic rats. The basal [35S]GTPgammaS binding in the spinal dorsal horn was slightly (approximately 13%) but significantly increased in diabetic rats. Western blot analysis revealed no significant difference in the expression of the alpha subunits of G(i) and G(o) proteins in the dorsal spinal cord between normal and diabetic rats. Conclusions These data suggest that the functional mu opioid receptors in the spinal cord dorsal horn of diabetic rats are reduced. The impaired functional mu opioid receptors in the spinal cord may constitute one of the mechanisms underlying the reduced spinal analgesic effect of mu opioids in diabetic neuropathic pain.


2008 ◽  
Vol 109 (5) ◽  
pp. 879-889 ◽  
Author(s):  
Dae-Hyun Roh ◽  
Hyun-Woo Kim ◽  
Seo-Yeon Yoon ◽  
Hyoung-Sig Seo ◽  
Young-Bae Kwon ◽  
...  

Background Selective blockade of spinal sigma(1) receptors (Sig-1R) suppresses nociceptive behaviors in the mouse formalin test. The current study was designed to verify whether intrathecal Sig-1R antagonists can also suppress chronic neuropathic pain. Methods Neuropathic pain was produced by chronic constriction injury (CCI) of the right sciatic nerve in rats. The Sig-1R antagonist BD1047 was administered intrathecally twice daily from postoperative days 0 to 5 (induction phase of neuropathic pain) or from days 15 to 20 (maintenance phase). Western blot and immunohistochemistry were performed to determine changes in Sig-1R expression and to examine the effect of BD1047 on N-methyl-D-aspartate receptor subunit 1 expression and phosphorylation in spinal cord dorsal horn from neuropathic rats. Results BD1047 administered on postoperative days 0-5 significantly attenuated CCI-induced mechanical allodynia, but not thermal hyperalgesia, and this suppression was blocked by intrathecal administration of the Sig-1R agonist PRE084. In contrast, BD1047 treatment during the maintenance phase of neuropathic pain had no effect on mechanical allodynia. Sig-1R expression significantly increased in the ipsilateral spinal cord dorsal horn from days 1 to 3 after CCI. Importantly, BD1047 (30 nmol) administered intrathecally during the induction, but not the maintenance phase, blocked the CCI-induced increase in N-methyl-D-aspartate receptor subunit 1 expression and phosphorylation. Conclusions These results demonstrate that spinal Sig-1Rs play a critical role in both the induction of mechanical allodynia and the activation of spinal N-methyl-d-aspartate receptors in CCI rats and suggest a potential therapeutic role for the use of Sig-1R antagonists in the clinical management of neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document