Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors

2007 ◽  
Vol 53 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Jakob von Engelhardt ◽  
Irinel Coserea ◽  
Verena Pawlak ◽  
Elke C. Fuchs ◽  
Georg Köhr ◽  
...  
Keyword(s):  
2007 ◽  
Vol 98 (4) ◽  
pp. 2324-2336 ◽  
Author(s):  
Adriano Augusto Cattani ◽  
Valérie Delphine Bonfardin ◽  
Alfonso Represa ◽  
Yehezkel Ben-Ari ◽  
Laurent Aniksztejn

Cell-surface glutamate transporters are essential for the proper function of early cortical networks because their dysfunction induces seizures in the newborn rat in vivo. We have now analyzed the consequences of their inhibition by dl-TBOA on the activity of the developing CA1 rat hippocampal network in vitro. dl-TBOA generated a pattern of recurrent depolarization with an onset and decay of several seconds' duration in interneurons and pyramidal cells. These slow network oscillations (SNOs) were mostly mediated by γ-aminobutyric acid (GABA) in pyramidal cells and by GABA and N-methyl-d-aspartate (NMDA) receptors in interneurons. However, in both cell types SNOs were blocked by NMDA receptor antagonists, suggesting that their generation requires a glutamatergic drive. Moreover, in interneurons, SNOs were still generated after the blockade of NMDA-mediated synaptic currents with MK-801, suggesting that SNOs are expressed by the activation of extrasynaptic NMDA receptors. Long-lasting bath application of glutamate or NMDA failed to induce SNOs, indicating that they are generated by periodic but not sustained activation of NMDA receptors. In addition, SNOs were observed in interneurons recorded in slices with or without the strata pyramidale and oriens, suggesting that the glutamatergic drive may originate from the radiatum and pyramidale strata. We propose that in the absence of an efficient transport of glutamate, the transmitter diffuses in the extracellular space to activate extrasynaptic NMDA receptors preferentially present on interneurons that in turn activate other interneurons and pyramidal cells. This periodic neuronal coactivation may contribute to the generation of seizures when glutamate transport dysfunction is present.


Author(s):  
Wilkie A. Wilson ◽  
Steven Stasheff ◽  
Scott Swartzwelder ◽  
Suzanne Clark ◽  
William W. Anderson
Keyword(s):  

2011 ◽  
Vol 59 (6) ◽  
pp. 954-964 ◽  
Author(s):  
Laura Texidó ◽  
Sara Hernández ◽  
Mireia Martín-Satué ◽  
Mònica Povedano ◽  
Anna Casanovas ◽  
...  

2004 ◽  
Vol 100 (6) ◽  
pp. 1531-1537 ◽  
Author(s):  
Klaus Hahnenkamp ◽  
Joke Nollet ◽  
Hugo K. Van Aken ◽  
Hartmut Buerkle ◽  
Tobias Halene ◽  
...  

Background Clinical studies suggest that intraoperative administration of the clinical remifentanil formulation Ultiva (GlaxoWellcome GmbH & Co, Bad Oldesloe, Germany) increases postoperative pain and postoperative analgesic requirements, but mechanisms remain unclear. N-methyl-D-aspartate (NMDA) receptors are thought to play a major role in development of postoperative pain and opiate tolerance. The authors hypothesized that Ultiva directly stimulates human NMDA receptors. Methods To test this hypothesis, the authors expressed human NR1A/NR2A and NR1A/NR2B NMDA receptors in Xenopus laevis oocytes by injection of messenger RNA prepared in vitro. After protein expression, they used a two-electrode voltage clamp to measure currents induced by NMDA receptor agonists and opioids. Results Noninjected cells were unresponsive to all compounds tested. Glutamate/glycine (1 nM-1 mM each) or Ultiva (0.01 pM-0.1 mM) stimulated NMDA receptors concentration dependently. NR1A/2A EC50 values were 8.0 microM/12 microM for glutamate/glycine and 3.5 nM for Ultiva, and NR1A/2B EC50 values were 3.9 microM/1.9 microM for glutamate/glycine and 0.82 microM for Ultiva. Glycine in combination with Ultiva showed no additive effect compared with Ultiva alone. Ultiva-induced currents were inhibited by MK-801 (pore blocker) but not by 7-CK (glycine antagonist), D-AP5 (glutamate antagonist), or naloxone. Fentanyl (10 microM) did not stimulate NMDA receptors. Conclusion These data indicate that Ultiva but not fentanyl stimulates NMDA receptors of different subunit combinations (NR1A/2A, NR1A/2B). The mechanism seems to be allosteric activation of the NMDA receptor.


2004 ◽  
Vol 22 (2) ◽  
pp. 59-65 ◽  
Author(s):  
Kazuyuki Kiyosue ◽  
Takeshi Y. Hiyama ◽  
Kimiko Nakayama ◽  
Michiki Kasai ◽  
Takahisa Taguchi

Sign in / Sign up

Export Citation Format

Share Document