Developmental plasticity of NMDA receptors at the calyx of Held synapse

2021 ◽  
pp. 108697
Author(s):  
Maria Gurma ◽  
Yi-Mei Yang ◽  
Lu-Yang Wang
2008 ◽  
Vol 100 (6) ◽  
pp. 3175-3184 ◽  
Author(s):  
Joseph C. Madara ◽  
Eric S. Levine

In addition to its effects on neuronal survival and differentiation, brain-derived neurotrophic factor (BDNF) plays an important role in modulating synaptic transmission and plasticity in many brain areas, most notably the neocortex and hippocampus. These effects may underlie a role for BDNF in learning and memory as well as developmental plasticity. Consistent with localization of the tropomyosin-related kinase B receptor to both sides of the synapse, BDNF appears to have pre- and postsynaptic effects, but the underlying cellular mechanisms are unclear and it is not known whether pre- and postsynaptic modulations by BDNF occur simultaneously. To address these issues, we recorded dual-component (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and N-methyl-d-aspartate [NMDA]) miniature excitatory postsynaptic currents (mEPSCs) from cortical and hippocampal pyramidal neurons and dentate gyrus granule cells from acute brain slices. BDNF had no effect on the fast component of mEPSC decay or on the peak amplitude, suggesting that BDNF did not modulate postsynaptic AMPA receptors, although BDNF rapidly modulated NMDA receptors, as seen by an enhancement of the slow component of mEPSC decay that was prevented by blocking postsynaptic NMDA receptors. At the same time, BDNF acted presynaptically to enhance mEPSC frequency. Surprisingly, the effect on frequency was also NMDA receptor dependent, but required activation of presynaptic, not postsynaptic, NMDA receptors. BDNF also enhanced action potential–dependent glutamate release via presynaptic NMDA receptors, an effect that was unmasked when voltage-gated calcium channels were partially inhibited. Our results indicate that BDNF acutely modulates presynaptic release and postsynaptic responsiveness through simultaneous effects on pre- and postsynaptic NMDA receptors.


2001 ◽  
Vol 86 (3) ◽  
pp. 1179-1194 ◽  
Author(s):  
L. Huang ◽  
S. L. Pallas

Partial ablation of the superior colliculus (SC) at birth in hamsters compresses the retinocollicular map, increasing the amount of visual field represented at each SC location. Receptive field sizes of single SC neurons are maintained, however, preserving receptive field properties in the prelesion condition. The mechanism that allows single SC neurons to restrict the number of convergent retinal inputs and thus compensate for induced brain damage is unknown. In this study, we examined the role of N-methyl-d-aspartate (NMDA) receptors in controlling retinocollicular convergence. We found that chronic 2-amino-5-phosphonovaleric acid (APV) blockade of NMDA receptors from birth in normal hamsters resulted in enlarged single-unit receptive fields in SC neurons from normal maps and further enlargement in lesioned animals with compressed maps. The effect was linearly related to lesion size. These results suggest that NMDA receptors are necessary to control afferent/target convergence in the normal SC and to compensate for excess retinal afferents in lesioned animals. Despite the alteration in receptive field size in the APV-treated animals, a complete visual map was present in both normal and lesioned hamsters. Visual responsiveness in the treated SC was normal; thus the loss of compensatory plasticity was not due to reduced visual responsiveness. Our results argue that NMDA receptors are essential for map refinement, construction of receptive fields, and compensation for damage but not overall map compression. The results are consistent with a role for the NMDA receptor as a coincidence detector with a threshold, providing visual neurons with the ability to calculate the amount of visual space represented by competing retinal inputs through the absolute amount of coincidence in their firing patterns. This mechanism of population matching is likely to be of general importance during nervous system development.


1992 ◽  
Vol 68 (5) ◽  
pp. 1901-1905 ◽  
Author(s):  
C. Rosenmund ◽  
P. Legendre ◽  
G. L. Westbrook

1. Conflicting evidence exists concerning the expression and properties of N-methyl-D-aspartate (NMDA) receptors on cerebellar Purkinje cells during development. We used whole-cell and single-channel recording to examine NMDA receptors on acutely dissociated Purkinje cells from newborn rats (postnatal day 0-4). 2. NMDA channels were present on > 80% of identified Purkinje cells and had pharmacological and single-channel properties that were indistinguishable from NMDA receptors on other neurons. In particular, responses were glycine-dependent and Mg2+ produced flickery open-channel block. 3. Our results demonstrate the transient expression of NMDA receptor/channels on Purkinje cells early in development. As NMDA receptors have been implicated in developmental plasticity in other regions of the CNS, a similar role is feasible during climbing fiber innervation of Purkinje cells.


2016 ◽  
Vol 22 (10) ◽  
pp. 1483-1491 ◽  
Author(s):  
B Zhang ◽  
E Seigneur ◽  
P Wei ◽  
O Gokce ◽  
J Morgan ◽  
...  

1993 ◽  
Author(s):  
Errol B. De Souza ◽  
Doris Clouet ◽  
Edythe D. London
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document