nmda channels
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 3)

H-INDEX

22
(FIVE YEARS 0)

2021 ◽  
Vol 15 (1) ◽  
pp. 8-17
Author(s):  
N. A. Voronina ◽  
O. Yu. Lisina ◽  
I. A. Krasilnikova ◽  
V. G. Kucheryanu ◽  
I. G. Kapitsa ◽  
...  

Author(s):  
Natalia Voronina ◽  
Oksana Lisina ◽  
Irina Krasilnikova ◽  
Alexandr Surin ◽  
Valerian Kucheryanu ◽  
...  

2019 ◽  
Vol 153 (5) ◽  
pp. 549-566
Author(s):  
Yu‐Shian Chen ◽  
Ya‐Chi Tu ◽  
Yi‐Chen Lai ◽  
Erin Liu ◽  
Ya‐Chin Yang ◽  
...  

Author(s):  
И.А. Красильникова ◽  
З.В. Бакаева ◽  
В.Г. Пинелис ◽  
О.Ю. Лисина ◽  
А.М. Сурин

Актуальность. Моделирование in vitro травматического повреждения мозга помогает выяснить патологические механизмы, ответственные за гибель клеток или их последующую дисфункцию в деталях, труднодостижимых in vivo. Цель. Определить изменения внутриклеточной концентрации свободного Са2+ ([Ca2+]i) и митохондриального потенциала (m) в первичной нейроглиальной культуре непосредственно в момент нанесения механической травмы. Методы и материалы. Методом флуоресцентной микроскопии отслеживали изменения [Ca2+]i) и m в первичной нейроглиальной культуре из коры головного мозга 1-2-дневных крыс. Возраст культуры в момент измерений 11-14 дней. Результаты. Обнаружено, что нейротравма вызывает скачок [Ca2+]i и совпадающее с ним по времени резкое падение m. Эти изменения затрагивали клетки, расположенные не далее 100мкм от границы травмы. Блокирование ионотропных глутаматных рецепторов NMDA-типа с помощью МК-801 снижало в 8,5 раз долю нейронов, имевших высокий подъем [Ca2+]i. Выводы. Поступления Са2+ в клетки при механическом повреждении первичной нейроглиальной культуры происходит преимущественно по NMDA-каналам и отчасти, вероятно, по АТФ-активируемым каналам. Background. In vitro modeling of traumatic brain injury helps clarifying pathological mechanisms responsible for cell death or their subsequent dysfunction in detail, which is difficult to accomplish in vivo. Aim. To determine changes in intracellular free Ca2+ concentration ([Ca2+]i) and mitochondrial potential (m) in a primary neuroglial culture during infliction of a mechanical injury (scratch). Methods and materials. Changes in [Ca2+]i and m in the primary neuroglial culture from the cerebral cortex of 1-2 day old rats were monitored using a fluorescence microscopy technique. Measurements were performed in 11-14-day old cultures. Results. Neurotrauma resulted in a sharp increase in [Ca2+]i and a synchronous profound drop of m. These changes affected cells located not farther than 100 µm from the boundary of the injury. Inhibition of NMDA-type ionotropic glutamate receptors with MK-801 reduced by approximately 8.5 times the proportion of neurons, which indicated a high [Ca2+]i rise. Conclusion. Са2+ influx into cells during mechanical injury of the primary neuroglial culture occurs predominantly through NMDA-channels and perhaps partially through ATP-activated channels.


2016 ◽  
Vol 116 (2) ◽  
pp. 522-539 ◽  
Author(s):  
Bolesław L. Osinski ◽  
Leslie M. Kay

Odors evoke gamma (40–100 Hz) and beta (20–30 Hz) oscillations in the local field potential (LFP) of the mammalian olfactory bulb (OB). Gamma (and possibly beta) oscillations arise from interactions in the dendrodendritic microcircuit between excitatory mitral cells (MCs) and inhibitory granule cells (GCs). When cortical descending inputs to the OB are blocked, beta oscillations are extinguished whereas gamma oscillations become larger. Much of this centrifugal input targets inhibitory interneurons in the GC layer and regulates the excitability of GCs, which suggests a causal link between the emergence of beta oscillations and GC excitability. We investigate the effect that GC excitability has on network oscillations in a computational model of the MC-GC dendrodendritic network with Ca2+-dependent graded inhibition. Results from our model suggest that when GC excitability is low, the graded inhibitory current mediated by NMDA channels and voltage-dependent Ca2+ channels (VDCCs) is also low, allowing MC populations to fire in the gamma frequency range. When GC excitability is increased, the activation of NMDA receptors and other VDCCs is also increased, allowing the slow decay time constants of these channels to sustain beta-frequency oscillations. Our model argues that Ca2+ flow through VDCCs alone could sustain beta oscillations and that the switch between gamma and beta oscillations can be triggered by an increase in the excitability state of a subpopulation of GCs.


2011 ◽  
Vol 12 (4) ◽  
pp. P30 ◽  
Author(s):  
P. Batista ◽  
E. Harris ◽  
M. Werner ◽  
A. Santos ◽  
G. Story
Keyword(s):  

2010 ◽  
Vol 22 (8) ◽  
pp. 2086-2112 ◽  
Author(s):  
Yingxue Wang ◽  
Shih-Chii Liu

With the advent of new experimental evidence showing that dendrites play an active role in processing a neuron's inputs, we revisit the question of a suitable abstraction for the computing function of a neuron in processing spatiotemporal input patterns. Although the integrative role of a neuron in relation to the spatial clustering of synaptic inputs can be described by a two-layer neural network, no corresponding abstraction has yet been described for how a neuron processes temporal input patterns on the dendrites. We address this void using a real-time aVLSI (analog very-large-scale-integrated) dendritic compartmental model, which incorporates two widely studied classes of regenerative event mechanisms: one is mediated by voltage-gated ion channels and the other by transmitter-gated NMDA channels. From this model, we find that the response of a dendritic compartment can be described as a nonlinear sigmoidal function of both the degree of input temporal synchrony and the synaptic input spatial clustering. We propose that a neuron with active dendrites can be modeled as a multilayer network that selectively amplifies responses to relevant spatiotemporal input spike patterns.


2009 ◽  
Vol 296 (4) ◽  
pp. R921-R928 ◽  
Author(s):  
Douglas B. Guard ◽  
Timothy D. Swartz ◽  
Robert C. Ritter ◽  
Gilbert A. Burns ◽  
Mihai Covasa

We have previously shown that blockade of N-methyl-d-aspartate (NMDA) receptors in the caudal brain stem delays satiation and increases food intake. NMDA receptors are heterodimers made up of distinct, but different, ion channel subunits. The NR2 subunits of the NMDA receptor contain the binding site for glutamate. About half of vagal afferents express immunoreactivity for NMDA NR2B subunit and about half of the NR2B expressing afferents also express NMDA NR2C or NR2D subunits. This suggests that increased food intake may be evoked by interference with glutamate binding to NMDA channels containing the NR2B subunit. To test this, we measured deprivation-induced intake of 15% sucrose solution following fourth ventricle and intra-nucleus of the solitary tract (intra-NTS) injections of Conantokin G (Con G; NR2B blocker), d-3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphoric acid (d-CPPene; NR2B/2A blocker), and (±)-cis-1-(phenanthren-2yl-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA; NR2D/C blocker). Fourth ventricular administration of Con G (5, 20, 40, 80 ng), d-CPPene (3.0, 6.25, 12.5, 25, 50, 100 ng), and PPDA (300, 400 ng) increased sucrose intake significantly compared with control. Likewise, injections of Con G (10 ng), d-CPPene (5 ng, 10 ng), and PPDA (0.5, 1.0, 2.5, 5.0 ng) directly into the NTS significantly increased sucrose intake. These results show that hindbrain injection of competitive NMDA antagonists with selectivity or preference for the NMDA receptor NR2B or NR2C subunits increases food intake.


Sign in / Sign up

Export Citation Format

Share Document