scholarly journals Downregulation of Kv4.2 channels mediated by NR2B-containing NMDA receptors in cultured hippocampal neurons

Neuroscience ◽  
2010 ◽  
Vol 165 (2) ◽  
pp. 350-362 ◽  
Author(s):  
Z. Lei ◽  
P. Deng ◽  
Y. Li ◽  
Z.C. Xu
1996 ◽  
Vol 76 (5) ◽  
pp. 3415-3424 ◽  
Author(s):  
K. S. Wilcox ◽  
R. M. Fitzsimonds ◽  
B. Johnson ◽  
M. A. Dichter

1. Although glycine has been identified as a required coagonist with glutamate at N-methyl-D-aspartate (NMDA) receptors, the understanding of glycine's role in excitatory synaptic neurotransmission is quite limited. In the present study, we used the whole cell patch-clamp technique to examine the ability of glycine to regulate current flow through synaptic NMDA receptors at excitatory synapses between cultured hippocampal neurons and in acutely isolated hippocampal slices. 2. These studies demonstrate that the glycine modulatory site on the synaptic NMDA receptor is not saturated under baseline conditions and that increased glycine concentrations can markedly increased NMDA-receptor-mediated excitatory postsynaptic currents (EPSCs) in hippocampal neurons in both dissociated cell culture and in slice. Saturation of the maximal effect of glycine takes place at different concentrations for different cells in culture, suggesting the presence of heterogenous NMDA receptor subunit compositions. 3. Bath-applied glycine had no effect on the time course of EPSCs in either brain slice or culture, indicating that desensitization of the NMDA receptor is not prevented by glycine over the time course of an EPSC. 4. When extracellular glycine concentration is high, all miniature EPSCs recorded in the cultured hippocampal neurons contained NMDA components, indicating that segregation of non-NMDA receptors at individual synaptic boutons does not occur.


2012 ◽  
Vol 1486 ◽  
pp. 1-13 ◽  
Author(s):  
Ben Chen ◽  
Min Jiang ◽  
Mi Zhou ◽  
Lulan Chen ◽  
Xu Liu ◽  
...  

2012 ◽  
Vol 28 (5) ◽  
pp. 550-560 ◽  
Author(s):  
Yun-Feng Zhang ◽  
Xia Li ◽  
Liang-Liang Peng ◽  
Guo-Hua Wang ◽  
Kai-Fu Ke ◽  
...  

2006 ◽  
Vol 95 (3) ◽  
pp. 1727-1734 ◽  
Author(s):  
Christopher G. Thomas ◽  
Ashleigh J. Miller ◽  
Gary L. Westbrook

Early in development, neurons only express NR1/NR2B-containing N-methyl-d-aspartate (NMDA) receptors. Later, NR2A subunits are upregulated during a period of rapid synapse formation. This pattern is often interpreted to indicate that NR2A-containing receptors are synaptic and that NR2B-containing receptors are extrasynaptic. We re-examined this issue using whole cell recordings in cultured hippocampal neurons. As expected, the inhibition of whole cell currents by the NR2B-specific antagonist, ifenprodil, progressively decreased from 69.5 ± 2.4% [6 days in vitro (DIV)] to 54.9 ± 2.6% (8 DIV), before reaching a plateau in the second week (42.5 ± 2%, 12–19 DIV). In NR2A−/− neurons, which express only NR1/NR2B-containing NMDA receptors, autaptic excitatory postsynaptic currents (EPSCs; ≥12 DIV) were more sensitive to ifenprodil and decayed more slowly than EPSCs in wild-type neurons. Thus NR2B-containing receptors were not excluded from synapses. We blocked synaptic NMDA receptors with MK-801 during evoked transmitter release, thus allowing us to isolate extrasynaptic receptors. Ifenprodil inhibition of this extrasynaptic population was highly variable in different neurons. Furthermore, extrasynaptic receptors in autaptic cultures were only partially blocked by ifenprodil, indicating that NR2A-containing receptors are not exclusively confined to the synapse. Extrasynaptic NR2A-containing receptors were also detected in NR2A−/− neurons transfected with full-length NR2A. Truncation of the NR2A C terminus did not eliminate synaptic expression of NR2A-containing receptors. Our results indicate that NR2A- and NR2B-containing receptors can be located in either synaptic or extrasynaptic compartments.


Neuron ◽  
2001 ◽  
Vol 29 (1) ◽  
pp. 243-254 ◽  
Author(s):  
Wei-Yang Lu ◽  
Heng-Ye Man ◽  
William Ju ◽  
William S. Trimble ◽  
John F. MacDonald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document