Gamma spectral analysis by artificial neural network coupled with Monte Carlo simulations

Author(s):  
Huseyin Sahiner ◽  
Xin Liu
2020 ◽  
Vol 17 (1) ◽  
pp. 15
Author(s):  
Sedigheh Sina ◽  
Zahra Molaeimanesh ◽  
Mehrnoosh Karimipoorfard ◽  
Zeinab Shafahi ◽  
Maryam Papie ◽  
...  

The virtual point detector concept is a useful concept in gamma ray spectroscopy. In this study, the virtual point detector, h0, was obtained for HPGe detectors of different sizes using MCNP5 Monte Carlo simulations. The HPGe detectors with different radii (rd), and height (hd), having Aluminum, or Carbon windows, were simulated. A point photon source emitting several gammas with certain energies was defined at distance x of the detectors. The pulse height distribution was scored using F8 tally. Finally, artificial neural network was used for predicting the h0 values for every value of hd, rd, and x. Because of the high simulation duration of MCNP code, a trained ANN is used to predict the value of h0 for each detector size. The results indicate that the Artificial Neural Network (ANN) can predict the virtual point detector good accuracy. 


2020 ◽  
Vol 17 (1) ◽  
pp. 15
Author(s):  
Sedigheh Sina ◽  
Zahra Molaeimanesh ◽  
Mehrnoosh Karimipoorfard ◽  
Zeinab Shafahi ◽  
Maryam Papie ◽  
...  

The virtual point detector concept is useful in gamma-ray spectroscopy. In this study, the virtual point detector, h0, was obtained for High Purity Germanium (HPGe) detectors of different sizes using MCNP5 Monte Carlo simulations. The HPGe detectors with different radii (rd), and height (hd), having aluminum, or Carbon windows, were simulated. A point photon source emitting several gammas with specific energies was defined at a distance x of the detectors. The pulse height distribution was scored using F8 tally. Finally, the artificial neural network was used for predicting the h0 values for every value of hd, rd, and x. Because of the high simulation duration of MCNP code, a trained ANN is used to predict the value of h0 for each detector size. The results indicate that the Artificial Neural Network (ANN) can predict the virtual point detector good accuracy. 


2018 ◽  
Vol 7 (2) ◽  
pp. 1
Author(s):  
Paulo Marcelo Tasinaffo ◽  
Gildárcio Sousa Gonçalves ◽  
Adilson Marques da Cunha ◽  
Luiz Alberto Vieira Dias

This paper proposes to develop a model-based Monte Carlo method for computationally determining the best mean squared error of training for an artificial neural network with feedforward architecture. It is applied for a particular non-linear classification problem of input/output patterns in a computational environment with abundant data. The Monte Carlo method allows computationally checking that balanced data are much better than non-balanced ones for an artificial neural network to learn by means of supervised learning. The major contribution of this investigation is that, the proposed model can be tested by analogy, considering also the fraud detection problem in credit cards, where the amount of training patterns used are high.


Author(s):  
Rafid Abbas Ali ◽  
Faten Sajet Mater ◽  
Asmaa Satar Jeeiad Al-Ragehey

Electron coefficients such as drift velocity, ionization coefficient, mean electron energy and Townsend energy for different concentrations of Hg 0.1%, 1%, 10% and 50% in the Ne-Hg mixture at a reduced electric field were calculated using two approaches taking into account inelastic collisions: The Monte Carlo simulation, and an artificial neural network. The effect of Hg vapor concentration on the electron coefficients showed that insignificant additions of mercury atom impurities to Neon, starting from fractions of a percent, affect the characteristics of inelastic processes and discharge, respectively. The aim of this paper is to explore the new applications of neural networks. The Levenberg-Marquardt algorithm and artificial neural network architecture employed was presented in this work to calculate the electron coefficients for different concentrations of Hg in Ne-Hg mixtures. The artificial neural network has been trained with four models (M1, M2, M3, M4), and analysis of the regression between the values of an artificial neural network and Monte Carlo simulation indicates that the M2 output provided the best perfect correlation at 100 Epochs, and the output data obtained was closest to the target data required through using the different stages of artificial neural network development starting with design, training and testing.


2012 ◽  
Vol 628 ◽  
pp. 324-329
Author(s):  
F. García Fernández ◽  
L. García Esteban ◽  
P. de Palacios ◽  
A. García-Iruela ◽  
R. Cabedo Gallén

Artificial neural networks have become a powerful modeling tool. However, although they obtain an output with very good accuracy, they provide no information about the uncertainty of the network or its coverage intervals. This study describes the application of the Monte Carlo method to obtain the output uncertainty and coverage intervals of a particular type of artificial neural network: the multilayer perceptron.


Sign in / Sign up

Export Citation Format

Share Document