vapor concentration
Recently Published Documents


TOTAL DOCUMENTS

434
(FIVE YEARS 83)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Bengt G. Martinsson ◽  
Johan Friberg ◽  
Oscar S. Sandvik ◽  
Moa K. Sporre

Abstract. Smoke from Western North American wildfires reached the stratosphere in large amounts in August 2017. Limb-oriented satellite-based sensors are commonly used for studies of wildfire aerosol injected into the stratosphere (OMPS-LP (Ozone Mapping and Profiler Suite Limb Profiler) and SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III on the International Space Station)). We find that these methods are inadequate for studies the first 1–2 months after such a strong fire event due to event termination (“saturation”). The nadir-viewing lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) is less affected due to shorter path in the smoke, and, further, provides means that we could use to develop a method to correct for strong attenuation of the signal. After the initial phase, the aerosol optical depth (AOD) from OMPS-LP and CALOP show very good agreement above the 380 K isentrope, whereas the OMPS-LP tends to produce higher AOD than CALIOP in the lowermost stratosphere (LMS), probably due to reduced sensitivity at altitudes below 17 km. Time series from CALIOP of attenuation-corrected stratospheric AOD of wildfire smoke show an exponential decline during the first month after the fire, which coincides with highly significant changes in the wildfire aerosol optical properties. The AOD decline is verified by the evolution of the smoke layer composition, comparing the aerosol scattering ratio (CALIOP) to the water vapor concentration from MLS (Microwave Limb Sounder). Initially the stratospheric wildfire smoke AOD is comparable with the most important volcanic eruptions during the last 25 years. Wildfire aerosol declines much faster, 80–90 % of the AOD is removed with a half-life of approximately 10 days. We hypothesize that this dramatic decline is caused by photolytic loss. This process is rarely observed in the atmosphere. However, in the stratosphere this process can be studied with practically no influence from wet deposition, in contrast to the troposphere where this is the main removal path of sub-micron aerosol particles. Despite the loss, the aerosol particles from wildfire smoke in the stratosphere are relevant for the climate.


Author(s):  
Aaron Olson

This study assessed the in vitro accuracy, precision, specificity, and measurement uncertainty of BACtrack®’s line of smartphone-connected breath alcohol analyzers. At the 0.080 g/210L ethanol vapor concentration the measurement uncertainty was determined to be ± 0.013, 0.004, and 0.006 g/210L for the Pro, C8, and C6 respectively at the 95% coverage interval. The analyzers showed an apparent ethanol response to isopropanol, and methanol, but not to acetone. BACtrack®’s smartphone-connected breath alcohol analyzers showed the ability to measure vaporous ethanol with confidence in the results.


Author(s):  
Aaron Olson

This study assessed the in vitro accuracy, precision, specificity, and measurement uncertainty of BACtrack®’s line of smartphone-connected breath alcohol analyzers. At the 0.080 g/210L ethanol vapor concentration the measurement uncertainty was determined to be ± 0.013, 0.004, and 0.006 g/210L for the Pro, C8, and C6 respectively at the 95% coverage interval. The analyzers showed an apparent ethanol response to isopropanol, and methanol, but not to acetone. BACtrack®’s smartphone-connected breath alcohol analyzers showed the ability to measure vaporous ethanol with confidence in the results.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 335
Author(s):  
Chenglong Liao ◽  
Miao Zhang ◽  
Nan Gao ◽  
Qingyun Tian ◽  
Jiangfan Shi ◽  
...  

We report on a novel colorimetric sensor system for highly sensitive detection of formaldehyde (FA) in the gas phase. The sensor is constructed with paper towel as a substrate coated with the sulfuric acid salt of hydroxylamine ((NH2OH)2·H2SO4) together with two pH indicators, bromophenol blue and thymol blue. Upon exposure to FA, the hydroxylamine will react with the absorbed FA to form a Schiff base (H2C=N-OH), thus releasing a stoichiometric amount of sulfuric acid, which in turn induces a color change of the pH indicator. Such a color change was significantly enriched by incorporating two pH indicators in the system. With the optimized molar ratio of the two pH indicators, the color change (from brown to yellow, and to red) could become so dramatic as to be visible to the eye depending on the concentration of FA. In particular, under 80 ppb of FA (the air quality threshold set by WHO) the color of the sensor substrate changes from brown to yellow, which can even be envisioned clearly by the naked eyes. By using a color reader, the observed color change can be measured quantitatively as a function of the vapor concentration of FA, which produces a linear relationship as fitted with the data points. This helps estimate the limit of detection (LOD), to be 10 ppb under an exposure time of 10 min, which is much lower than the air quality threshold set by WHO. The reported sensor also demonstrates high selectivity towards FA with no color change observed when exposed to other common chemicals, including solvents and volatile organic compounds. With its high sensitivity and selectivity, the proposed paper-based colorimetric sensor thus developed can potentially be employed as a low-cost and disposable detection kit that may find broad application in detecting FA in indoor air and many other environments.


Author(s):  
Aaron Olson

This study assessed the in vitro accuracy, precision, specificity, and measurement uncertainty of BACtrack®’s line of smartphone-connected breath alcohol analyzers. At the 0.080 g/210L ethanol vapor concentration the measurement uncertainty was determined to be ± 0.013, 0.004, and 0.006 g/210L for the Pro, C8, and C6 respectively at the 95% coverage interval. The analyzers showed an apparent ethanol response to isopropanol, and methanol, but not to acetone. BACtrack®’s smartphone-connected breath alcohol analyzers showed the ability to measure vaporous ethanol with confidence in the results.


2021 ◽  
Vol 141 (11) ◽  
pp. 725-733
Author(s):  
Naoto Kodama ◽  
Yasunobu Yokomizu ◽  
Asato Takahashi ◽  
Koya Nakamura ◽  
Naoki Yamamura

2021 ◽  
Author(s):  
Conner Godbold ◽  
Farzad Poursadegh ◽  
Oleksandr Bibik ◽  
Caroline Genzale

Abstract Due to the non-premixed nature of diesel combustion, mixing prior to the reaction zone has proven to be one of the primary factors in emissions formation. Therefore, the advancement of diagnostics used to measure mixing fields in diesel applications is imperative for a greater understanding of how in-cylinder emissions mitigation techniques operate. Towards this goal, we have recently demonstrated the use of a high-speed two-wavelength extinction imaging measurement, UV-VIS DBI, for time-resolved measurements of mixing in a diesel spray. This diagnostic operates by back-lighting the spray with ultra-violet and visible illumination. The visible illumination is selected at a non-absorbing wavelength, such that the visible light is only attenuated by liquid droplet scattering, enabling discrete detection of the liquid-vapor mixture and pure vapor phases of the spray. For this work, Ultraviolet and visible light are generated using a ND:YAG pumped frequency-doubled tunable dye laser operating at 9.9 kHz . The simultaneous UV-Visible illumination is used to back-illuminate a vaporizing diesel spray, and the resulting extinction of each signal is recorded by a pair of high-speed cameras. Using an aromatic tracer (naphthalene, BP = 218 °C) in a base fuel of dodecane (BP = 215–217 °C), the UV illumination (280 nm) is absorbed along the illumination path through the spray, yielding a projected image of line-of-sight optical depth that is proportional to the projected fuel vapor concentration in the pure vapor region of the spray. In this paper, a new method of determining the absorption coefficient for the pure-vapor phase of the spray will be discussed, along with showing how an Inverse-Abel transform can be used to compute planar concentration data from the projected concentration data yielded by the diagnostic. This diagnostic and data processing is applied to diesel sprays from two Bosch CRI3-20 ks1.5 single-orifice injectors (140 μm and 90 μm orifice diameters) injecting into a nonreacting high-pressure and temperature nitrogen environment using a constant-flow, optically-accessible spray chamber operating at 60 bar and 900 K. The mixing data produced agrees well with previously existing mixing data, which further instills confidence in the diagnostic, and gives the diesel combustion community access to mixing field data for a 140 μm orifice diameter injector at a 60 bar and 900 K condition.


Sign in / Sign up

Export Citation Format

Share Document