pulse height
Recently Published Documents


TOTAL DOCUMENTS

1104
(FIVE YEARS 71)

H-INDEX

40
(FIVE YEARS 3)

2021 ◽  
Vol 16 (12) ◽  
pp. P12030
Author(s):  
F. Alcalde Bessia ◽  
J. Lipovetzky ◽  
I. Perić

Abstract This work presents the design of BUSARD, an application specific integrated circuit (ASIC) for the detection of ionizing particles. The ASIC is a monolithic active pixel sensor which has been fabricated in a High-Voltage Silicon-On-Insulator (HV-SOI) process that allows the fabrication of a buried N+ diffusion below the Buried OXide (BOX) as a standard processing step. The first version of the chip, BUSARD-A, takes advantage of this buried diffusion as an ionizing particle sensor. It includes a small array of 13×13 pixels, with a pitch of 80 μm, and each pixel has one buried diffusion with a charge amplifier, discriminator with offset tuning and digital processing. The detector has several operation modes including particle counting and Time-over-Threshold (ToT). An initial X-ray characterization of the detector was carried out, obtaining several pulse height and ToT spectra, which then were used to perform the energy calibration of the device. The Molybdenum 𝐊α emission was measured with a standard deviation of 127 e- of ENC by using the analog pulse output, and with 276 e- of ENC by using the ToT digital output. The resolution in ToT mode is dominated by the pixel-to-pixel variation.


Author(s):  
Alice Apponi ◽  
Francesco Pandolfi ◽  
Ilaria Rago ◽  
Gianluca Cavoto ◽  
Carlo Mariani ◽  
...  

Abstract We report on an apparatus able to measure the absolute detection efficiency of a detector for electrons in the 30 - 900 eV range. In particular, we discuss the characterisation of a two-stage chevron microchannel plate (MCP). The measurements have been performed in the LASEC laboratory at Roma Tre University, whit a custom-made electron gun. The very good stability of the beam current in the fA range, together with the picoammeter nominal resolution of 0.01 fA, allowed the measurement of the MCP absolute efficiency ε. We found an ε = (0.489±0.003) with no evident energy dependence. We fully characterised the MCP pulse shape distribution, which is quasi-Gaussian with a well visible peak above the noise level. We measured a 68% variation of the average pulse height between 30 and 500 eV. Furthermore, with a deeper analysis of the pulse shape, and in particular of the correlation between pulse height, area and width, we found a method to discriminate single- and multi- electron events occurring within a 10 ns time window.


2021 ◽  
Vol 85 (10) ◽  
pp. 1068-1071
Author(s):  
S. I. Potashev ◽  
A. A. Afonin ◽  
Yu. M. Burmistrov ◽  
A. I. Drachev ◽  
E. S. Konobeevskii ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1149
Author(s):  
Yun Dai ◽  
Zhonghan Zhang ◽  
Xibin Wang ◽  
Zhuowei Lu ◽  
Huamin Kou ◽  
...  

Scintillation single crystal fibers (SCFs) have great potential applications in the new generation of high-energy ray and particle detectors due to their morphological advantages. In this work; Ce:LuAG SCFs with a diameter of 1 mm were grown along the direction of [111] by laser-heated pedestal growth (LHPG) method using a transparent ceramic as the source rod; and a doping concentration was 0.1 at%, 0.3 at%, 1 at%, respectively. The effects of growth rate and annealing in air on the scintillation and optical properties of SCF are discussed in detail. The results of analyzing the absorption spectra; radioluminescence (RL) spectra; pulse-height spectra and fluorescence lifetime of SCFs show that the SCF maintains excellent scintillation performance while having a fiber structure. Therefore; Ce:LuAG SCF is a potential candidate material for detector.


2021 ◽  
Vol 9 ◽  
Author(s):  
M. L. Gallin-Martel ◽  
Y. H. Kim ◽  
L. Abbassi ◽  
A. Bes ◽  
C. Boiano ◽  
...  

Experimental fission studies for reaction physics or nuclear spectroscopy can profit from fast, efficient, and radiation-resistant fission fragment (FF) detectors. When such experiments are performed in-beam in intense thermal neutron beams, additional constraints arise in terms of target-detector interface, beam-induced background, etc. Therefore, wide gap semi-conductor detectors were tested with the aim of developing innovative instrumentation for such applications. The detector characterization was performed with mass- and energy-separated fission fragment beams at the ILL (Institut Laue Langevin) LOHENGRIN spectrometer. Two single crystal diamonds, three polycrystalline and one diamond-on-iridium as well as a silicon carbide detector were characterized as solid state ionization chamber for FF detection. Timing measurements were performed with a 500-µm thick single crystal diamond detector read out by a broadband amplifier. A timing resolution of ∼10.2 ps RMS was obtained for FF with mass A = 98 at 90 MeV kinetic energy. Using a spectroscopic preamplifier developed at INFN-Milano, the energy resolution measured for the same FF was found to be slightly better for a ∼50-µm thin single crystal diamond detector (∼1.4% RMS) than for the 500-µm thick one (∼1.6% RMS), while a value of 3.4% RMS was obtained with the 400-µm silicon carbide detector. The Pulse Height Defect (PHD), which is significant in silicon detectors, was also investigated with the two single crystal diamond detectors. The comparison with results from α and triton measurements enabled us to conclude that PHD leads to ∼50% loss of the initial generated charge carriers for FF. In view of these results, a possible detector configuration and integration for in-beam experiments has been discussed.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5792
Author(s):  
Marek Szlósarczyk ◽  
Robert Piech ◽  
Anna Milc ◽  
Urszula Hubicka

In this work, a new sensitive voltammetric method for the determination of rifampicin without time-consuming preconcentration is presented. The objective was to develop a simple, fast and sensitive voltammetric procedure for the analysis of rifampicin in pharmaceutical products. The cyclic renewable mercury film silver-based electrode (Hg(Ag)FE) was applied as a working electrode for this purpose. The optimal conditions for the determination of rifampicin were defined, in terms of the composition of supporting electrolyte (including pH) and instrumental parameters (potential and time of deposition, step potential, pulse height). The method was validated resulting in a satisfactory linearity range of 0.4–250.0 µgmL−1; the limits of detection and quantification are 0.12 µgmL−1 and 0.4 µgmL−1, respectively; and the repeatability of the method expressed as RSD is 4.1% (n = 6) with a surface area of 10.9 mm2. The proposed method was successfully applied in the analysis of rifampicin in simple and composed pharmaceutical formulations.


Sign in / Sign up

Export Citation Format

Share Document