scholarly journals Surface heat flux estimation with embedded fiber Bragg gratings measurements: Numerical study

2017 ◽  
Vol 12 ◽  
pp. 1077-1081 ◽  
Author(s):  
J. Gaspar ◽  
Y. Corre ◽  
J-L. Gardarein ◽  
M. Firdaouss ◽  
D. Guilhem ◽  
...  
2000 ◽  
Vol 23 (4) ◽  
pp. 339-348 ◽  
Author(s):  
Jennifer M Jacobs ◽  
Richard L Coulter ◽  
Wilfried Brutsaert

Author(s):  
Obinna Uyanna ◽  
Hamidreza Najafi

Abstract Developing accurate and efficient solutions for inverse heat conduction problems allows advancements in the heat flux measurement techniques for many applications. In the present paper, a one-dimensional medium with a moving boundary is considered. It is assumed that two thermocouples are used to measure temperature at two locations within the medium while the front boundary is moving towards the back surface. Determining surface heat flux using measured temperature data is an inverse heat conduction problem. A filter based Tikhonov regularization method is used to develop a solution for this problem. Filter coefficients are calculated for various thicknesses of the medium. It is demonstrated that the filter coefficients can be interpolated to calculate the appropriate values for each thickness while it is continuously moving at a known rate. The use of filter method allows near real-time heat flux estimation. The developed solution is validated through several numerical test cases including a test case for a moving boundary in a medium modeled in COMSOL. It is shown that the proposed solution can effectively estimate the surface heat flux on the moving boundary in a near real-time fashion.


2018 ◽  
Vol 16 (9) ◽  
pp. 576-593 ◽  
Author(s):  
Abolfazl Irani Rahaghi ◽  
Ulrich Lemmin ◽  
Andrea Cimatoribus ◽  
Damien Bouffard ◽  
Michael Riffler ◽  
...  

Author(s):  
Hamidreza Najafi ◽  
Obinna Uyanna ◽  
Jian Zhang

Abstract Developing accurate and stable solutions for inverse heat conduction problems (IHCPs) is crucial in many industrial applications where direct measurement of surface conditions, such as heat flux or temperature, is not possible in practice and temperature measurement from interior points can be obtained alternatively. IHCPs are mathematically ill-posed and therefore developing stable solutions for them is challenging. Application of intelligent algorithms for solving IHCPs has been successfully explored for several cases. In the present paper, the problem of near real-time surface heat flux estimation in a one-dimensional domain with temperature dependent material properties and moving boundary is considered. An artificial neural network (ANN) is developed to use the temperature measurement data from interior points for limited number of time steps as the inputs and calculate the surface heat flux and recession rate at the current time step as the output of the network. For this purpose, a multi-layer perceptron (MLP) network is selected, trained and tested using heat flux-temperature data that were evaluated via COMSOL Multiphysics for a 1D medium that is exposed to standard heat flux profiles on its surface (including triangular, parabolic and step function). A randomly generated heat flux profile is also applied to the surface of the medium and temperature distribution is calculated via COMSOL Multiphysics. The temperature data are then used as the inputs to the network and surface heat flux is evaluated under this condition to assess the capability of the developed ANN in surface heat flux estimation. The performance of the network when using different number of inputs (previous and future time steps from which temperature data are needed for surface heat flux estimation) as well as different network topology are explored in the presence of random measurement error. The results show that the developed approach allows accurate near real-time surface heat flux estimation in a 1-D medium with temperature dependent material properties and moving boundary. The solution of this problem can be further extended to be used in sensors for ablative thermal protection system in space vehicles.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1493
Author(s):  
Najiyah Safwa Khashi’ie ◽  
Iskandar Waini ◽  
Nurul Amira Zainal ◽  
Khairum Hamzah ◽  
Abdul Rahman Mohd Kasim

This numerical study was devoted to examining the occurrence of non-unique solutions in boundary layer flow due to deformable surfaces (cylinder and flat plate) with the imposition of prescribed surface heat flux. The hybrid Al2O3-Cu/water nanofluid was formulated using the single phase model with respective correlations of hybrid nanofluids. The governing model was simplified by adopting a similarity transformation. The transformed differential equations were then numerically computed using the efficient bvp4c solver with the ranges of the control parameters 0.5%≤ϕ1,ϕ2≤1.5% (Al2O3 and Cu volumetric concentration), 0≤K≤0.2 (curvature parameter), 2.6<S≤3.2 (suction parameter) and −2.5<λ≤0.5 (stretching/shrinking parameter). Dual steady solutions are presentable for both a cylinder (K>0) and a flat plate (K=0) with the inclusion of only the suction (transpiration) parameter. The real and stable solutions were mathematically validated through the stability analysis. The Al2O3-Cu/water nanofluid with ϕ1=0.5% (alumina) and ϕ2=1.5% (copper) has the highest skin friction coefficient and heat transfer rate, followed by the hybrid nanofluids with volumetric concentrations (ϕ1=1%,ϕ2=1%) and (ϕ1=1.5%,ϕ2=0.5%), respectively. Surprisingly, the flat plate surface abates the separation of boundary layer while it enhances the heat transfer process.


Sign in / Sign up

Export Citation Format

Share Document