inverse heat conduction
Recently Published Documents


TOTAL DOCUMENTS

856
(FIVE YEARS 85)

H-INDEX

43
(FIVE YEARS 4)

Author(s):  
Mikko Helle ◽  
Henrik Saxén ◽  
Bart de Graaff ◽  
Cornelis van der Bent

AbstractThe condition and state of the hearth of the blast furnace is of considerable importance since the life length of the refractories governs the campaign length of the furnace, but it is also of significance as it affects the drainage of iron and slag and the hot metal temperature and composition. The paper analyses the hearth of a blast furnace using a model of the lining wear based on the solution of an inverse heat conduction problem, studying the changes in the lining state throughout the campaign. Different operation states are detected, characterized by smooth and efficient hot metal production and by erratic behavior with large disturbances in the hearth state. During the periods of poor performance, the hearth exhibits a cycling state with stages of excessive skull growth on the unworn refractory, followed by periods of dissolution of the skull and lining erosion. An explanation of the transitions is sought by a stating and solving a force balance for the deadman with the aim to clarify whether it is floating or sitting. A connection between the thermal cycles in the hearth and the hot metal sulfur content is finally demonstrated.


Author(s):  
M. A. Abdelkawy ◽  
Mohammed M. Babatin ◽  
Abeer S. Alnahdi ◽  
T. M. Taha

For fractional inverse heat conduction problem (FIHCP), this paper introduces a numerical study. For the proposed FIHCP, in addition to the unknown function of temperature, the boundary heat fluxes are also unknown. Related to the two independent variables, the proposed scheme uses a fully spectral collocation treatment. Our technique is determined to be more accurate, efficient and practicable. The obtained results confirmed the exponential convergence of the spectral scheme.


2021 ◽  
Vol 15 ◽  
pp. 151-158
Author(s):  
M. R. Shahnazari ◽  
F. Roohi Shali ◽  
A. Saberi ◽  
M. H. Moosavi

Solving the inverse problems, especially in the field of heat transfer, is one of the challenges of engineering due to its importance in industrial applications. It is well-known that inverse heat conduction problems (IHCPs) are severely ill-posed, which means that small disturbances in the input may cause extremely large errors in the solution. This paper introduces an accurate method for solving inverse problems by combining Tikhonov's regularization and the genetic algorithm. Finding the regularization parameter as the decisive parameter is modelled by this method, a few sample problems were solved to investigate the efficiency and accuracy of the proposed method. A linear sum of fundamental solutions with unknown constant coefficients assumed as an approximated solution to the sample IHCP problem and collocation method is used to minimize residues in the collocation points. In this contribution, we use Morozov's discrepancy principle and Quasi-Optimality criterion for defining the objective function, which must be minimized to yield the value of the optimum regularization parameter.


Author(s):  
Yang Zeng

Abstract Due to the flexibility and feasibility of addressing ill-posed problems, the Bayesian method has been widely used in inverse heat conduction problems (IHCPs). However, in the real science and engineering IHCPs, the likelihood function of the Bayesian method is commonly computationally expensive or analytically unavailable. In this study, in order to circumvent this intractable likelihood function, the approximate Bayesian computation (ABC) is expanded to the IHCPs. In ABC, the high dimensional observations in the intractable likelihood function are equalized by their low dimensional summary statistics. Thus, the performance of the ABC depends on the selection of summary statistics. In this study, a machine learning-based ABC (ML-ABC) is proposed to address the complicated selections of the summary statistics. The Auto-Encoder (AE) is a powerful Machine Learning (ML) framework which can compress the observations into very low dimensional summary statistics with little information loss. In addition, in order to accelerate the calculation of the proposed framework, another neural network (NN) is utilized to construct the mapping between the unknowns and the summary statistics. With this mapping, given arbitrary unknowns, the summary statistics can be obtained efficiently without solving the time-consuming forward problem with numerical method. Furthermore, an adaptive nested sampling method (ANSM) is developed to further improve the efficiency of sampling. The performance of the proposed method is demonstrated with two IHCP cases.


Sign in / Sign up

Export Citation Format

Share Document