scholarly journals A numerical study of the seasonal cycle in the northeast pacific ocean as driven by the wind stress and surface heat flux

1987 ◽  
Vol 25 (4) ◽  
pp. 375-386 ◽  
Author(s):  
William W. Hsieh
2017 ◽  
Vol 47 (6) ◽  
pp. 1221-1242 ◽  
Author(s):  
Kaushik Srinivasan ◽  
James C. McWilliams ◽  
Lionel Renault ◽  
Hristina G. Hristova ◽  
Jeroen Molemaker ◽  
...  

AbstractThe distribution and strength of submesoscale (SM) surface layer fronts and filaments generated through mixed layer baroclinic energy conversion and submesoscale coherent vortices (SCVs) generated by topographic drag are analyzed in numerical simulations of the near-surface southwestern Pacific, north of 16°S. In the Coral Sea a strong seasonal cycle in the surface heat flux leads to a winter SM “soup” consisting of baroclinic mixed layer eddies (MLEs), fronts, and filaments similar to those seen in other regions farther away from the equator. However, a strong wind stress seasonal cycle, largely in sync with the surface heat flux cycle, is also a source of SM processes. SM restratification fluxes show distinctive signatures corresponding to both surface cooling and wind stress. The winter peak in SM activity in the Coral Sea is not in phase with the summer dominance of the mesoscale eddy kinetic energy in the region, implying that local surface layer forcing effects are more important for SM generation than the nonlocal eddy deformation field. In the topographically complex Solomon and Bismarck Seas, a combination of equatorial proximity and boundary drag generates SCVs with large-vorticity Rossby numbers (Ro ~ 10). River outflows in the Bismarck and Solomon Seas make a contribution to SM generation, although they are considerably weaker than the topographic effects. Mean to eddy kinetic energy conversions implicate barotropic instability in SM topographic wakes, with the strongest values seen north of the Vitiaz Strait along the coast of Papua New Guinea.


2017 ◽  
Vol 12 ◽  
pp. 1077-1081 ◽  
Author(s):  
J. Gaspar ◽  
Y. Corre ◽  
J-L. Gardarein ◽  
M. Firdaouss ◽  
D. Guilhem ◽  
...  

2011 ◽  
Vol 24 (6) ◽  
pp. 1784-1800 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Tristan S. L’Ecuyer

Abstract The equatorial asymmetry of the east Pacific intertropical convergence zone (ITCZ) is explored on the basis of an ocean surface heat budget analysis carried out with a variety of satellite data products. The annual mean climatology of absorbed shortwave flux exhibits a pronounced meridional asymmetry due to a reduction of insolation by high clouds in the north ITCZ. Ocean mixed layer advection has the largest, if not exclusive, effect of counteracting this shortwave-exerted asymmetry. Other heat fluxes, in particular latent heat flux, predominate over the advective heat flux in magnitude but are secondary with respect to equatorial asymmetry. The asymmetry in advective heat flux stems from a warm pool off the Central American coast and, to a lesser extent, the North Equatorial Counter Current, neither of which exist in the Southern Hemisphere. The irregular continental geography presumably comes into play by generating a warm pool north of the equator and bringing cold waters to the south in the far eastern Pacific. In addition to the annual climatology, the north–south contrast in the seasonal cycle of surface heat flux is instrumental in sustaining the north ITCZ throughout the year. The northeast Pacific is exposed to a seasonal cycle that is considerably weaker than that in the southeast Pacific, arising from multiple causes including the finite eccentricity of the earth’s orbit and meridional gradient in mixed layer absorptivity. Simple experiments generating synthetic sea surface temperature (SST) illustrate that the muted seasonal cycle of heat flux forcing moderates the SST seasonal variability in the northeast Pacific and thus allows the north ITCZ to persist year round. Existing theories on the ITCZ asymmetry are briefly examined in light of the present findings.


2020 ◽  
Vol 33 (17) ◽  
pp. 7663-7678
Author(s):  
Zeyuan Hu ◽  
Aixue Hu ◽  
Yongyun Hu ◽  
Nan Rosenbloom

AbstractA slowdown in the rate of surface warming in the early 2000s led to renewed interest in the redistribution of ocean heat content (OHC) and its relationship with internal climate variability. We use the Community Earth System Model version 1 to study the relationship between OHC and the interdecadal Pacific oscillation (IPO), a major mode of decadal sea surface temperature variability in the Pacific Ocean. By comparing the relative contributions of surface heat flux and ocean dynamics to changes in OHC for different phases of the IPO, we try to identify the underlying physical processes involved. Our results suggest that during IPO phase transitions, changes of 0–300-m OHC across the northern extratropical Pacific are positively contributed by both surface heat flux and oceanic heat transport. By contrast, oceanic heat transport appears to drive the OHC changes in equatorial Pacific whereas surface heat flux acts as a damping term. During a positive IPO phase, weakened wind-driven circulation acts to increase the OHC in the equatorial Pacific while the enhanced evaporation acts to damp OHC anomalies. In the Kuroshio–Oyashio Extension region, a dipole anomaly of zonal heat advection amplifies an OHC dipole anomaly that moves eastward, while strong turbulent heat fluxes act to dampen this OHC anomaly. In the northern subtropical Pacific, both the wind-driven evaporation change and the change of zonal heat advection along Kuroshio Extension contribute to the OHC change during phase transition. For the northern subpolar Pacific, both surface heat flux and enhanced meridional advection contribute to the positive OHC anomalies during the positive IPO phase.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1493
Author(s):  
Najiyah Safwa Khashi’ie ◽  
Iskandar Waini ◽  
Nurul Amira Zainal ◽  
Khairum Hamzah ◽  
Abdul Rahman Mohd Kasim

This numerical study was devoted to examining the occurrence of non-unique solutions in boundary layer flow due to deformable surfaces (cylinder and flat plate) with the imposition of prescribed surface heat flux. The hybrid Al2O3-Cu/water nanofluid was formulated using the single phase model with respective correlations of hybrid nanofluids. The governing model was simplified by adopting a similarity transformation. The transformed differential equations were then numerically computed using the efficient bvp4c solver with the ranges of the control parameters 0.5%≤ϕ1,ϕ2≤1.5% (Al2O3 and Cu volumetric concentration), 0≤K≤0.2 (curvature parameter), 2.6<S≤3.2 (suction parameter) and −2.5<λ≤0.5 (stretching/shrinking parameter). Dual steady solutions are presentable for both a cylinder (K>0) and a flat plate (K=0) with the inclusion of only the suction (transpiration) parameter. The real and stable solutions were mathematically validated through the stability analysis. The Al2O3-Cu/water nanofluid with ϕ1=0.5% (alumina) and ϕ2=1.5% (copper) has the highest skin friction coefficient and heat transfer rate, followed by the hybrid nanofluids with volumetric concentrations (ϕ1=1%,ϕ2=1%) and (ϕ1=1.5%,ϕ2=0.5%), respectively. Surprisingly, the flat plate surface abates the separation of boundary layer while it enhances the heat transfer process.


Sign in / Sign up

Export Citation Format

Share Document