inverse heat conduction problem
Recently Published Documents


TOTAL DOCUMENTS

445
(FIVE YEARS 48)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
Mikko Helle ◽  
Henrik Saxén ◽  
Bart de Graaff ◽  
Cornelis van der Bent

AbstractThe condition and state of the hearth of the blast furnace is of considerable importance since the life length of the refractories governs the campaign length of the furnace, but it is also of significance as it affects the drainage of iron and slag and the hot metal temperature and composition. The paper analyses the hearth of a blast furnace using a model of the lining wear based on the solution of an inverse heat conduction problem, studying the changes in the lining state throughout the campaign. Different operation states are detected, characterized by smooth and efficient hot metal production and by erratic behavior with large disturbances in the hearth state. During the periods of poor performance, the hearth exhibits a cycling state with stages of excessive skull growth on the unworn refractory, followed by periods of dissolution of the skull and lining erosion. An explanation of the transitions is sought by a stating and solving a force balance for the deadman with the aim to clarify whether it is floating or sitting. A connection between the thermal cycles in the hearth and the hot metal sulfur content is finally demonstrated.


Author(s):  
M. A. Abdelkawy ◽  
Mohammed M. Babatin ◽  
Abeer S. Alnahdi ◽  
T. M. Taha

For fractional inverse heat conduction problem (FIHCP), this paper introduces a numerical study. For the proposed FIHCP, in addition to the unknown function of temperature, the boundary heat fluxes are also unknown. Related to the two independent variables, the proposed scheme uses a fully spectral collocation treatment. Our technique is determined to be more accurate, efficient and practicable. The obtained results confirmed the exponential convergence of the spectral scheme.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012110
Author(s):  
L Cattani ◽  
F Bozzoli ◽  
V Ayel ◽  
C Romestant ◽  
Y Bertin

Abstract The aim of this work is to estimate the local heat flux and heat transfer coefficient for the case of evaporation of thin liquid film deposited on capillary heated channel: it plays a fundamental role in the two-phase heat transfer processes inside mini-channels. In the present analysis it is investigated a semi-infinite slug flow (one liquid slug followed by one single vapour bubble) in a heated capillary copper tube. The estimation procedure here adopted is based on the solution of the inverse heat conduction problem within the wall domain adopting, as input data, the temperature field on the external tube wall acquired by means of infrared thermography.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3313
Author(s):  
Sun Kyoung Kim

This work examines the effects of the known boundary conditions on the accuracy of the solution in one-dimensional inverse heat conduction problems. The failures in many applications of these problems are attributed to inaccuracy of the specified constants and boundary conditions. Since the boundary conditions and material properties in most thermal problems are imposed with uncertainty, the effects of their inaccuracy should be understood prior to the inverse analyses. The deviation from the exact solution has been examined for each case according to the errors in material properties, boundary location, and known boundary conditions. The results show that the effects of such errors are dramatic. Based on these results, the applicability and limitations of the inverse heat conduction analyses have been evaluated and discussed.


Sign in / Sign up

Export Citation Format

Share Document