northeast pacific
Recently Published Documents


TOTAL DOCUMENTS

1171
(FIVE YEARS 195)

H-INDEX

83
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Armineh Barkhordarian ◽  
David Marcolino Nielsen ◽  
Johanna Baehr

Abstract Over the last decade, the northeast Pacific (NP) experienced strong marine heatwaves (MHWs) that produced devastating marine ecological impacts and received major societal concerns. Here, we assess the link between the well-mixed greenhouse gas (GHG) forcing and the occurrence probabilities of the duration and intensity of the NP MHWs. To begin with, we apply attribution technique on the SST time series, and detect a region of systematically and externally-forced SST increase -- the long-term warming pool -- co-located with the past notably Blob-like SST anomalies. The anthropogenic signal has recently emerged from the natural variability of SST over the warming pool, which we attribute primarily to increased GHG concentrations, with anthropogenic aerosols playing a secondary role. With extreme event attribution technique, we further show that GHG forcing is a necessary, but not a sufficient, causation for the multi-year persistent MHW events in the current climate, such as that happened in 2019/2020 over the warming pool. However, the occurrence of the 2019/2020 MHW was extremely unlikely in the absence of GHG forcing. Thus, as GHG emissions continue to firmly rise, it is very likely that GHG forcings will become a sufficient cause for events of the magnitude of the 2019/2020 record event.


2021 ◽  
Author(s):  
shengjie qin ◽  
Lei Yang ◽  
Haibin qi ◽  
Keshun xiu ◽  
Huihui song

2021 ◽  
Vol 8 ◽  
Author(s):  
Tarang Khangaonkar ◽  
Adi Nugraha ◽  
Su Kyong Yun ◽  
Lakshitha Premathilake ◽  
Julie E. Keister ◽  
...  

Effects and impacts of the Northeast Pacific marine heatwave of 2014–2016 on the inner coastal estuarine waters of the Salish Sea were examined using a combination of monitoring data and an established three-dimensional hydrodynamic and biogeochemical model of the region. The anomalous high temperatures reached the U.S. Pacific Northwest continental shelf toward the end of 2014 and primarily entered the Salish Sea waters through an existing strong estuarine exchange. Elevated temperatures up to + 2.3°C were observed at the monitoring stations throughout 2015 and 2016 relative to 2013 before dissipating in 2017. The hydrodynamic and biogeochemical responses to this circulating high-temperature event were examined using the Salish Sea Model over a 5-year window from 2013 to 2017. Responses of conventional water-quality indicator variables, such as temperature and salinity, nutrients and phytoplankton, zooplankton, dissolved oxygen, and pH, were evaluated relative to a baseline without the marine heatwave forcing. The simulation results relative to 2014 show an increase in biological activity (+14%, and 6% Δ phytoplankton biomass, respectively) during the peak heatwave year 2015 and 2016 propagating toward higher zooplankton biomass (+14%, +18% Δ mesozooplankton biomass). However, sensitivity tests show that this increase was a direct result of higher freshwater and associated nutrient loads accompanied by stronger estuarine exchange with the Pacific Ocean rather than warming due to the heatwave. Strong vertical circulation and mixing provided mitigation with only ≈+0.6°C domain-wide annual average temperature increase within Salish Sea, and served as a physical buffer to keep waters cooler relative to the continental shelf during the marine heatwave.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew W. Bateman ◽  
Angela D. Schulze ◽  
Karia H. Kaukinen ◽  
Amy Tabata ◽  
Gideon Mordecai ◽  
...  

2021 ◽  
Author(s):  
Hannah M. Palmer ◽  
Veronica Padilla Vriesman ◽  
Roxanne M. W. Banker ◽  
Jessica R. Bean

Abstract. The shells of marine invertebrates can serve as high-resolution records of oceanographic and atmospheric change through time. In particular, oxygen and carbon isotope analyses of nearshore marine calcifiers that grow by accretion over their lifespans provide seasonal records of environmental and oceanographic conditions. Archaeological shell middens generated by Indigenous communities along the Northeast Pacific coast contain shells harvested over multiple seasons for millennia. These shell middens, as well as analyses of archival and modern shells, have the potential to provide multi-site, seasonal archives of nearshore conditions throughout the Holocene. A significant volume of oxygen and carbon isotope data from archaeological shells exists, yet is separately published in archaeological, geochemical, and paleoceanographic journals and has not been comprehensively analyzed to examine oceanographic change over time. Here, we compiled a database of previously published oxygen and carbon isotope data from archaeological, archival, and modern marine molluscs from the North American coast of the Northeast Pacific (32° N to 50° N). This database includes oxygen and carbon isotope data from over 550 modern, archaeological, and sub-fossil shells from 8880 years before present (BP) to the present, from which there are 4,845 total δ13C and 5,071 total δ18O measurements. Shell dating and sampling strategies vary among studies (1–118 samples per shell) and vary significantly by journal discipline. Data are from various bivalves and gastropod species, with Mytilus spp. being the most commonly analyzed taxon. This novel database can be used to investigate changes in nearshore sea surface conditions including warm-cool oscillations, heat waves, and upwelling intensity, and provides nearshore calcite δ13C and δ18O values that can be compared to the vast collections of offshore foraminifera calcite δ13C and δ18O data from marine sediment cores. By utilizing previously published geochemical data from midden and museum shells rather than sampling new specimens, future scientific research can reduce or omit the alteration or destruction of culturally valued specimens and sites. The data set is publicly available through PANGAEA at https://doi.org/10.1594/PANGAEA.932671 (Palmer et al., 2021).


Sign in / Sign up

Export Citation Format

Share Document