Existence and multiplicity results for double phase problem with nonlinear boundary condition

2021 ◽  
Vol 60 ◽  
pp. 103307
Author(s):  
Na Cui ◽  
Hong-Rui Sun
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Csaba Farkas ◽  
Alessio Fiscella ◽  
Patrick Winkert

Abstract In this paper, we study a singular Finsler double phase problem with a nonlinear boundary condition and perturbations that have a type of critical growth, even on the boundary. Based on variational methods in combination with truncation techniques, we prove the existence of at least one weak solution for this problem under very general assumptions. Even in the case when the Finsler manifold reduces to the Euclidean norm, our work is the first one dealing with a singular double phase problem and nonlinear boundary condition.


2021 ◽  
Vol 121 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Nikolaos S. Papageorgiou ◽  
Calogero Vetro ◽  
Francesca Vetro

We consider a parametric double phase problem with Robin boundary condition. We prove two existence theorems. In the first the reaction is ( p − 1 )-superlinear and the solutions produced are asymptotically big as λ → 0 + . In the second the conditions on the reaction are essentially local at zero and the solutions produced are asymptotically small as λ → 0 + .


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jie Yang ◽  
Haibo Chen ◽  
Senli Liu

We consider the following double phase problem with variable exponents: −div∇upx−2∇u+ax∇uqx−2∇u=λfx,u in Ω,u=0, on ∂Ω. By using the mountain pass theorem, we get the existence results of weak solutions for the aforementioned problem under some assumptions. Moreover, infinitely many pairs of solutions are provided by applying the Fountain Theorem, Dual Fountain Theorem, and Krasnoselskii’s genus theory.


Sign in / Sign up

Export Citation Format

Share Document