Core design of ma-transmutation fast reactor with zirconium hydride target

2021 ◽  
Vol 379 ◽  
pp. 111254
Author(s):  
Koki Hibi ◽  
Kunihiro Itoh ◽  
Kazuo Ikeda ◽  
Kenji Konashi
Author(s):  
G.J.C. Carpenter

In zirconium-hydrogen alloys, rapid cooling from an elevated temperature causes precipitation of the face-centred tetragonal (fct) phase, γZrH, in the form of needles, parallel to the close-packed <1120>zr directions (1). With low hydrogen concentrations, the hydride solvus is sufficiently low that zirconium atom diffusion cannot occur. For example, with 6 μg/g hydrogen, the solvus temperature is approximately 370 K (2), at which only the hydrogen diffuses readily. Shears are therefore necessary to produce the crystallographic transformation from hexagonal close-packed (hep) zirconium to fct hydride.The simplest mechanism for the transformation is the passage of Shockley partial dislocations having Burgers vectors (b) of the type 1/3<0110> on every second (0001)Zr plane. If the partial dislocations are in the form of loops with the same b, the crosssection of a hydride precipitate will be as shown in fig.1. A consequence of this type of transformation is that a cumulative shear, S, is produced that leads to a strain field in the surrounding zirconium matrix, as illustrated in fig.2a.


1964 ◽  
Vol 25 (5) ◽  
pp. 451-453 ◽  
Author(s):  
S.W. Peterson ◽  
V.N. Sadana ◽  
W.L. Korst

2009 ◽  
pp. 120-126
Author(s):  
K.V. Govindan Kutty ◽  
P.R. Vasudeva Rao ◽  
Baldev Raj

2018 ◽  
Author(s):  
G Padmakumar ◽  
K. Velusamy ◽  
Bhamidi V. S. S. S. Prasad ◽  
P Lijukrishnan ◽  
P. Selvaraj

Sign in / Sign up

Export Citation Format

Share Document