Heat Transfer in a Blocked Spent Fuel Subassembly of a Sodium cooled Fast Reactor

2018 ◽  
Author(s):  
Bala Sundaram G ◽  
Velusamy K
2017 ◽  
Vol 131 ◽  
pp. 15-20 ◽  
Author(s):  
Hiroki Osato ◽  
Jun Nishiyama ◽  
Toru Obara
Keyword(s):  

Author(s):  
Takafumi AOYAMA ◽  
Tadahiko TORIMARU ◽  
Akihiro YOSHIDA ◽  
Yoshio ARII ◽  
Soju SUZUKI
Keyword(s):  

1983 ◽  
Vol 105 (3) ◽  
pp. 454-459 ◽  
Author(s):  
M. Keyhani ◽  
F. A. Kulacki ◽  
R. N. Christensen

Heat transfer measurements are presented for free convection in a vertical annulus wherein the inner cylinder is at constant surface heat flux and the outer cylinder is at constant temperature. Overall heat transfer data are corrected for thermal radiation in the annulus. Rayleigh numbers span the conduction, transition and boundary layer regimes of flow, and average heat transfer coefficients are obtained with air and helium as the working fluids. The range of Rayleigh number is 103 < Ra < 2.3 × 106; the radius ratio is 4.33; and the aspect ratio (cylinder length divided by annular gap) is 27.6. Energy transferred by thermal radiation varies with Rayleigh number and working fluid. With air, thermal radiation can account for up to 50 percent of the heat transfer. With helium, radiation can account for up to 30 percent of the heat transfer rate. The results of the study provide data relevant to the design and performance assessment of spent fuel packages as part of the National Waste Terminal Storage Program for nuclear waste isolation.


2019 ◽  
Vol 5 (4) ◽  
pp. 353-359
Author(s):  
Alexander V. Egorov ◽  
Yurii S. Khomyakov ◽  
Valerii I. Rachkov ◽  
Elena A. Rodina ◽  
Igor R. Suslov

The Russian Federation is developing a number of technologies within the «Proryv» project for closing the nuclear fuel cycle utilizing mixed (U-Pu-MA) nitride fuel. Key objectives of the project include improving fast reactor nuclear safety by minimizing reactivity changes during fuel operating period and improving radiological and environmental fuel cycle safety through Pu multi-recycling and МА transmutation. This advanced technology is expected to allow operating the reactor in an equilibrium cycle with a breeding ratio equaling approximately 1 with stable reactivity and fuel isotopic composition. Nevertheless, to reach this state the reactor must still operate in an initial transient state for a lengthy period (over 10 years) of time, which requires implementing special measures concerning reactivity control. The results obtained from calculations show the possibility of achieving a synergetic effect from combining two objectives. Using МА reprocessed from thermal reactor spent fuel in initial fuel loads in FR ensures a minimal reactivity margin during the entire fast reactor fuel operating period, comparable to the levels achieved in equilibrium state with any kind of relevant Pu isotopic composition. This should be combined with using reactivity compensators in the first fuel micro-campaigns. In the paper presented are the results of simulation of the overall life cycle of a 1200 MWe fast reactor, reaching equilibrium fuel composition, and respective changes in spent fuel nuclide and isotopic composition. It is shown that МА from thermal and fast reactors spent fuel can be completely utilized in the new generation FRs without using special actinide burners.


Author(s):  
Dyah Sulistyani Rahayu ◽  
Yuli Purwanto ◽  
Zainus Salimin

DESIGN OF DRY CASK STORAGE FOR SERPONG MULTI PURPOSE REACTOR SPENT NUCLEAR FUEL. The spent nuclear fuel (SNF) from Serpong Multipurpose Reactor, after 100 days storing in the reactor pond, is transferred to water pool interim storage for spent fuel (ISFSF). At present there are a remaining of 245 elements of SNF on the ISSF,198 element of which have been re-exported to the USA. The dry-cask storage allows the SNF, which has already been cooled in the ISSF, to lower its radiation exposure and heat decayat a very low level. Design of the dry cask storage for SNF has been done. Dual purpose of unventilated vertical dry cask was selected among other choices of metal cask, horizontal concrete modules, and modular vaults by taking into account of technical and economical advantages. The designed structure of cask consists of SNF rack canister, inner steel liner, concrete shielding of cask, and outer steel liner. To avoid bimetallic corrosion, the construction material for canister and inner steel liner follows the same material construction of fuel cladding, i.e. the alloy of AlMg2. The construction material of outer steel liner is copper to facilitate the heat transfer from the cask to the atmosphere. The total decay heat is transferred from SNF elements bundle to the atmosphere by a serial of heat transfer resistance for canister wall, inner steel liner, concrete shielding, and outer steel liner respectedly. The rack canister optimum capacity of 34 fuel elements was designed by geometric similarity method basedon SNF position arrangement of 7 x 6 triangular pitch array of fuel elements for prohibiting criticality by spontaneous neutron. The SNF elements are stored vertically on the rack canister.  The thickness of concrete wall shielding was calculated by trial and error to give air temperature of 30 oC and radiation dose on the wall surface of outer liner of 200 mrem/h. The SNF elements bundles originate from the existing racks of wet storage, i.e. rack canister no 3, 8 and 10. The value of I0 from the rack no 3, 8 and 10 are 434.307; 446.344; and 442.375 mrem/h respectively. The total heat decay from rack canister no 3,8 and 10 are 179.640 ; 335.2; and 298.551 watts. The result of the trial and error calculation indicates that the rack canister no 3, 8 and 10 need the thickness of concrete shielding of 0.1912, 0.1954 and 0.1940 m respectively.Keywords: heat and radiation decay, spent fuel , storage cask.


Sign in / Sign up

Export Citation Format

Share Document