hexagonal close packed
Recently Published Documents


TOTAL DOCUMENTS

846
(FIVE YEARS 146)

H-INDEX

62
(FIVE YEARS 8)

2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Ruth Birch ◽  
Thomas Benjamin Britton

Materials with an allotropic phase transformation can form microstructures where grains have orientation relationships determined by the transformation history. These microstructures influence the final material properties. In zirconium alloys, there is a solid-state body-centred cubic (b.c.c.) to hexagonal close-packed (h.c.p.) phase transformation, where the crystal orientations of the h.c.p. phase can be related to the parent b.c.c. structure via the Burgers orientation relationship (BOR). In the present work, a reconstruction code, developed for steels and which uses a Markov chain clustering algorithm to analyse electron backscatter diffraction maps, is adapted and applied to the h.c.p./b.c.c. BOR. This algorithm is released as open-source code (via github, as ParentBOR). The algorithm enables new post-processing of the original and reconstructed data sets to analyse the variants of the h.c.p. α phase that are present and understand shared crystal planes and shared lattice directions within each parent β grain; it is anticipated that this will assist in understanding the transformation-related deformation properties of the final microstructure. Finally, the ParentBOR code is compared with recently released reconstruction codes implemented in MTEX to reveal differences and similarities in how the microstructure is described.


Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Leisheng Chen ◽  
Jiahao Zhao ◽  
Yuejin Yuan ◽  
Jaeyoung Lee

Fuel elements in a high-temperature gas-cooled reactor (HTGR) core may be stacked with a hexagonal close-packed (HCP) structure; therefore, analyzing the temperature distribution and heat transfer efficiency in the HCP pebble bed is of great significance to the design and safety of HTGR cores. In this study, the heat transfer characteristics of an HCP pebble bed are studied using CFD. The thermal fields and convective heat transfer coefficients under different coolant inlet velocities are obtained, and the velocity fields in the gap areas are also analyzed in different planes. It is found that the strongest heat transfer is shown near the right vertices of the top and bottom spheres, while the weakest heat transfer takes place in areas near the contact points where no fluid flows over; in addition, the correlation of the overall heat transfer coefficient with the Reynolds number is proposed as havg = 0.1545(k/L)Re0.8 (Pr = 0.712, 1.6 × 104 ≤ Re ≤ 4 × 104). It is also found that the heat transfer intensity of the HCP structure is weaker than that of the face-centered-cubic structure. These findings provide a reference for reactor designers and will contribute to the development of safer pebble-bed cores.


2022 ◽  
Vol 119 (2) ◽  
pp. e2113059119
Author(s):  
Yang Sun ◽  
Feng Zhang ◽  
Mikhail I. Mendelev ◽  
Renata M. Wentzcovitch ◽  
Kai-Ming Ho

The Earth's inner core started forming when molten iron cooled below the melting point. However, the nucleation mechanism, which is a necessary step of crystallization, has not been well understood. Recent studies have found that it requires an unrealistic degree of undercooling to nucleate the stable, hexagonal, close-packed (hcp) phase of iron that is unlikely to be reached under core conditions and age. This contradiction is referred to as the inner core nucleation paradox. Using a persistent embryo method and molecular dynamics simulations, we demonstrate that the metastable, body-centered, cubic (bcc) phase of iron has a much higher nucleation rate than does the hcp phase under inner core conditions. Thus, the bcc nucleation is likely to be the first step of inner core formation, instead of direct nucleation of the hcp phase. This mechanism reduces the required undercooling of iron nucleation, which provides a key factor in solving the inner core nucleation paradox. The two-step nucleation scenario of the inner core also opens an avenue for understanding the structure and anisotropy of the present inner core.


2021 ◽  
Vol 119 (26) ◽  
pp. 261905
Author(s):  
Shaolou Wei ◽  
Michael Xu ◽  
James M. LeBeau ◽  
Cemal Cem Tasan

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 156
Author(s):  
Hong He ◽  
Shangyi Ma ◽  
Shaoqing Wang

Heat treatment is a necessary means to obtain desired properties for most of the materials. Thus, the grain boundary (GB) phenomena observed in experiments actually reflect the GB behaviors at relatively high temperature to some extent. In this work, 405 different GBs were systematically constructed for body-centered cubic (BCC) metals and the grain boundary energies (GBEs) of these GBs were calculated with molecular dynamics for W at 2400 K and β-Ti at 1300 K and by means of molecular statics for Mo and W at 0 K. It was found that high temperature may result in the GB complexion transitions for some GBs, such as the Σ11{332}{332} of W. Moreover, the relationships between GBEs and sin(θ) can be described by the functions of the same type for different GB sets having the same misorientation axis, where θ is the angle between the misorientation axis and the GB plane. Generally, the GBs tend to have lower GBE when sin(θ) is equal to 0. However, the GB sets with the <110> misorientation axis have the lowest GBE when sin(θ) is close to 1. Another discovery is that the local hexagonal-close packed α phase is more likely to form at the GBs with the lattice misorientations of 38.9°/<110>, 50.5°/<110>, 59.0°/<110> and 60.0°/<111> for β-Ti at 1300 K.


Author(s):  
Zhiyong Jian ◽  
Yangchun Chen ◽  
Shifang Xiao ◽  
Liang Wang ◽  
Xiaofan Li ◽  
...  

Abstract An effective and reliable Finnis-Sinclair (FS) type potential is developed for large-scale molecular dynamics (MD) simulations of plasticity and phase transition of Magnesium (Mg) single crystals under high-pressure shock loading. The shock-wave profiles exhibit a split elastic-inelastic wave in the [0001]HCP shock orientation and a three-wave structure in the [10-10]HCP and [-12-10]HCP directions, namely, an elastic precursor following the plastic and phase-transition fronts. The shock Hugoniot of the particle velocity (Up) vs. the shock velocity (Us) of Mg single crystals in three shock directions under low shock strength reveals apparent anisotropy, which vanishes with increasing shock strength. For the [0001]HCP shock direction, the amorphization caused by strong atomic strain plays an important role in the phase transition and allows for the phase transition from an isotropic stressed state to the daughter phase. The reorientation in the shock directions [10-10]HCP and [-12-10]HCP, as the primary plasticity deformation, leads to the compressed hexagonal close-packed (HCP) phase and reduces the phase-transition threshold pressure. The phase-transition pathway in the shock direction [0001]HCP includes a preferential contraction strain along the [0001]HCP direction, a tension along [-12-10]HCP direction, an effective contraction and shear along the [10-10]HCP direction. For the [10-10]HCP and [-12-10]HCP shock directions, the phase-transition pathway consists of two steps: a reorientation and the subsequent transition from the reorientation hexagonal close-packed phase (RHCP) to the body-centered cubic (BCC). The orientation relationships between HCP and BCC are (0001)HCP á-12-10ñHCP // {110}BCC á001ñBCC. Due to different slipping directions during the phase transition, three variants of the product phase are observed in the shocked samples, accompanied by three kinds of typical coherent twin-grain boundaries between the variants. The results indicate that the highly concentrated shear stress leads to the crystal lattice instability in the elastic precursor, and the plasticity or the phase transition relaxed the shear stress.


Author(s):  
Zhiyong Jian ◽  
Yangchun Chen ◽  
Shifang xiao ◽  
Liang Wang ◽  
Xiaofan Li ◽  
...  

Abstract We have investigated the shock-induced plasticity and phase transition in the hexagonal columnar nanocrystalline (HCN) Mg by large-scale nonequilibrium molecular dynamics simulations (NEMD). The preexisting grain boundaries (GBs) induce the nucleation of the {10-12} twins for the local stress relaxation. The twins grow up in grains leading to the orientation rotation. The phase transition from the hexagonal close-packed (HCP) phase to the body-centered cubic (BCC) phase begins when the migrating twin grain boundaries (TGBs) meet in A- and C-type grains, and continues in the plastic deformation regions. The phase-transition pathway involves two steps: the reorientation and phase transformation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3313
Author(s):  
Jun Lan ◽  
Yong Yang ◽  
Song Hu

The application of moth-eye nanostructured polymer film on the flexible polyethylene terephthalate (PET) substrate is an effective way to improve its antireflection (AR) performance. However, many factors affect the AR properties of the moth-eye structure in the actual manufacturing process. Moreover, the antireflection research based on PET substrate has been relatively lacking compared with the silicon substrate. In this paper, we simulate and analyze the AR performance of the moth-eye nanostructured polymer film on PET substrate by using the finite-difference time-domain method within the wavelength range of 400–1100 nm. Simulation results show that the parabola-shaped moth-eye structure (PSMS) can suppress the Fresnel reflection significantly. Moreover, the height and filling ratios are the dominant factors that affect the AR performance of PSMS. Additionally, the base diameter, residual layer thickness, and the refractive index of PSMS polymer film also affect the reflectivity of PET slightly. As a result, an optimal PSMS with base diameter of 400 nm, height of 300 nm, and the hexagonal close-packed arrangement is appropriate, and the solar-weighted reflectivity of PET can be suppressed to 0.21%, which shows a prominent advantage over the bare PET (≈6%). Therefore, this research has promising potential for improving the optical performance of optoelectronic devices by using nanostructured polymer materials.


Sign in / Sign up

Export Citation Format

Share Document