Estimation of the fuel temperature reactivity coefficient of the UMass-Lowell research reactor based on empirical and theoretical point reactor kinetics models

2021 ◽  
Vol 381 ◽  
pp. 111341
Author(s):  
J. Boffie ◽  
S.K. Aghara ◽  
O.U. Dim ◽  
J. Strandburg
Author(s):  
Nur Syazwani Mohd Ali ◽  
Khaidzir Hamzah ◽  
Faridah Mohamad Idris ◽  
Nahrul Khair Alang Md Rashid ◽  
Mohamad Sabri Minhat ◽  
...  

2018 ◽  
Vol 191 (3) ◽  
pp. 203-230 ◽  
Author(s):  
Daniel Wooten ◽  
Jeffrey J. Powers

2018 ◽  
Vol 33 (39) ◽  
pp. 1850233
Author(s):  
Md. Mehedi Hassan ◽  
K. M. Jalal Uddin Rumi ◽  
Md. Nazrul Islam Khan ◽  
Rajib Goswami

In this work, control rod worth, xenon (Xe) effect on reactivity and power defect have been measured by doing experiments in the BAEC TRIGA Mark-II research reactor (BTRR) and through established theoretical analysis. Firstly, to study the xenon-135 effect on reactivity, reactor is critical at 2.4 MW for several hours. Next, experiments have been performed at very low power (50 W) to avoid temperature effects. Moreover, for the power defect experiment, different increasing power level has been tested by withdrawing the control rods. Finally, it is concluded that the total control rods worth of the BAEC TRIGA Mark-II research reactor, as determined through this study, is enough to run the reactor at full power (3 MW) considering the xenon-135 and fuel temperature effects.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Shengli Chen ◽  
Cenxi Yuan

Neutronic performance is investigated for a potential accident tolerant fuel (ATF), which consists of U3Si2fuel and FeCrAl cladding. In comparison with current UO2-Zr system, FeCrAl has a better oxidation resistance but a larger thermal neutron absorption cross section. U3Si2has a higher thermal conductivity and a higher uranium density, which can compensate the reactivity suppressed by FeCrAl. Based on neutronic investigations, a possible U3Si2-FeCrAl fuel-cladding system is taken into consideration. Fundamental properties of the suggested fuel-cladding combination are investigated in a fuel assembly. These properties include moderator and fuel temperature coefficients, control rods worth, radial power distribution (in a fuel rod), and different void reactivity coefficients. The present work proves that the new combination has less reactivity variation during its service lifetime. Although, compared with the current system, it has a little larger deviation on power distribution and a little less negative temperature coefficient and void reactivity coefficient and its control rods worth is less important, variations of these parameters are less important during the service lifetime of fuel. Hence, U3Si2-FeCrAl system is a potential ATF candidate from a neutronic view.


Sign in / Sign up

Export Citation Format

Share Document