Pairing effect and misleading regularity

2015 ◽  
Vol 943 ◽  
pp. 18-25 ◽  
Author(s):  
A. Al-Sayed
Keyword(s):  
2020 ◽  
Vol 35 (38) ◽  
pp. 2050315
Author(s):  
R. Razavi ◽  
O. Nouri ◽  
A. Rahmatinejad ◽  
S. Mohammadi

Excitation-energy dependent parity ratios in the level densities of [Formula: see text] isotopes are calculated within a microscopic approach. Introducing a parity equilibration parameter, energy dependence of the transition from where a single parity dominates to a parity equilibrated state is compared among [Formula: see text] isotopes and its relation to the pairing effect is investigated. A correlation between the pair-breaking and the equilibration of parity distributions is observed for the considered isotopes.


Science ◽  
1970 ◽  
Vol 169 (3942) ◽  
pp. 290-291 ◽  
Author(s):  
C. J. Driscoll ◽  
N. L. Darvey

2008 ◽  
Vol 17 (04) ◽  
pp. 655-667 ◽  
Author(s):  
D. MOKHTARI ◽  
I. AMI ◽  
M. FELLAH ◽  
N. H. ALLAL

The neutron-proton (n-p) isovector pairing effect on the nuclear moment of inertia has been studied within the framework of the BCS approximation. An analytical expression of the moment of inertia, that explicitly depends upon the n-p pairing, has been established using the Inglis cranking model. The model was first tested numerically for nuclei such as N = Z and whose experimental values of the moment of inertia are known (i.e. such as 16 ≤ Z ≤ 40). It has been shown that the n-p pairing effect is non-negligible and clearly improves the theoretical predictions when compared to those of the pairing between like particles. Secondly, predictions have been established for even-even proton-rich rare-earth nuclei. It has been shown that the n-p pairing effect is non-negligible when N = Z and rapidly decreases with increasing values of (N-Z).


2012 ◽  
Vol 21 (12) ◽  
pp. 1250100 ◽  
Author(s):  
F. HAMMACHE ◽  
N. H. ALLAL ◽  
M. FELLAH

The one-proton and two-proton separation energies are studied for "ordinary" and rare-earth proton-rich nuclei by including the isovector neutron–proton (np) pairing correlations using the BCS approximation. Even–even as well as odd nuclei are considered. In the latter case, the wave function is defined using the blocked-level technique. The single-particle energies used are those of a deformed Woods–Saxon mean field. It is shown that the np isovector pairing effects on the one-proton and two-proton separation energies are non-negligible. However, the only isovector BCS approximation seems to be inadequate for a good description of these quantities when including the np pairing effects: either a particle-number projection or the inclusion of the isoscalar pairing effect seems to be necessary. Another possible improvement would be a more realistic choice of the pairing strengths.


Sign in / Sign up

Export Citation Format

Share Document