proton pairing
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 12)

H-INDEX

24
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1405
Author(s):  
Feng Pan ◽  
Yingwen He ◽  
Lianrong Dai ◽  
Chong Qi ◽  
Jerry P. Draayer

A diagonalization scheme for the shell model mean-field plus isovector pairing Hamiltonian in the O(5) tensor product basis of the quasi-spin SUΛ(2) ⊗ SUI(2) chain is proposed. The advantage of the diagonalization scheme lies in the fact that not only can the isospin-conserved, charge-independent isovector pairing interaction be analyzed, but also the isospin symmetry breaking cases. More importantly, the number operator of the np-pairs can be realized in this neutron and proton quasi-spin basis, with which the np-pair occupation number and its fluctuation at the J = 0+ ground state of the model can be evaluated. As examples of the application, binding energies and low-lying J = 0+ excited states of the even–even and odd–odd N∼Z ds-shell nuclei are fit in the model with the charge-independent approximation, from which the neutron–proton pairing contribution to the binding energy in the ds-shell nuclei is estimated. It is observed that the decrease in the double binding-energy difference for the odd–odd nuclei is mainly due to the symmetry energy and Wigner energy contribution to the binding energy that alter the pairing staggering patten. The np-pair amplitudes in the np-pair stripping or picking-up process of these N = Z nuclei are also calculated.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Reponen ◽  
R. P. de Groote ◽  
L. Al Ayoubi ◽  
O. Beliuskina ◽  
M. L. Bissell ◽  
...  

AbstractUnderstanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with the measurement of the charge radius of 96Ag (N = 49). The results provide a challenge for nuclear theory: calculations are unable to reproduce the pronounced discontinuity in the charge radii as one moves below N = 50. The technical advancements in this work open the N = Z region below 100Sn for further optical studies, which will lead to more comprehensive input for nuclear theory development.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Peng Du ◽  
Qianli Chen ◽  
Zhijun Fan ◽  
Huizhu Pan ◽  
Frederick G. Haibach ◽  
...  

Abstract Proton conduction is an important property for fuel cell electrolytes. The search for molecular details on proton transport is an ongoing quest. Here, we show that in hydrated yttrium doped barium zirconate using X-ray and neutron diffraction that protons tend to localize near the dopant yttrium as a conjugated superstructure. The proton jump time measured using quasi-elastic neutron scattering follows the Holstein-Samgin polaron model, revealing that proton hopping is weakly coupled to the high-frequency O-H stretching motion, but strongly coupled to low-frequency lattice phonons. The ratio of the proton polaron effective mass, m*, and the proton mass is m*/m = 2, when coupled to the Zr-O stretching mode, giving experimental evidence of proton pairing in perovskites, as a result of proton-phonon coupling. Possible pathways of a proton pair are provided through Nudge Elastic Band calculations. The pairing of protons, when jumping, is discussed in context of a cooperative protonic charge transport process.


2020 ◽  
Vol 102 (4) ◽  
Author(s):  
Feng Pan ◽  
Yingwen He ◽  
Yingxin Wu ◽  
Yu Wang ◽  
Kristina D. Launey ◽  
...  
Keyword(s):  

2020 ◽  
Vol 1610 ◽  
pp. 012012
Author(s):  
S. Pittel ◽  
A. Carranza M. ◽  
J. G. Hirsch
Keyword(s):  

Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 115
Author(s):  
Jin-Biao Wei ◽  
Fiorella Burgio ◽  
Hans-Josef Schulze

We study the cooling of isolated neutron stars with particular regard to the importance of nuclear pairing gaps. A microscopic nuclear equation of state derived in the Brueckner-Hartree-Fock approach is used together with compatible neutron and proton pairing gaps. We then study the effect of modifying the gaps on the final deduced neutron star mass distributions. We find that a consistent description of all current cooling data can be achieved and a reasonable neutron star mass distribution can be predicted employing the (slightly reduced by about 40%) proton 1S0 Bardeen-Cooper-Schrieffer (BCS) gaps and no neutron 3P2 pairing.


2019 ◽  
Vol 99 (6) ◽  
Author(s):  
Xiao-Hua Fan ◽  
Xin-le Shang ◽  
Jian-Min Dong ◽  
Wei Zuo

2019 ◽  
Vol 201 ◽  
pp. 09011
Author(s):  
E. O. Sushenok ◽  
A. P. Severyukhin ◽  
N. N. Arsenyev ◽  
I. N. Borzov

The effects of the residual interaction in the particle-particle channel on β-decay characteristics and the multi-neutron emission probabilities in the β-decay of 126,128,130,132Cd are studied within the quasiparticle random phase approximation with the Skyrme interaction. The coupling between one-and two-phonon terms in the wave functions of the low-energy 1+ states of the daughter nuclei is taken into account. It is shown that the inclusion of the spin-isospin interaction in the particle-particle channel leads to the reduction of half-lives and redistribution of one-and two-neutron emission probabilities. The competition of tensor interaction and neutron-proton pairing in the β-decay characteristics of the neutron-rich Cd isotopes is discussed.


Sign in / Sign up

Export Citation Format

Share Document