hybrid composites
Recently Published Documents





2022 ◽  
Vol 167 ◽  
pp. 107364
Qihua Wang ◽  
Nan Zhang ◽  
Chunhui Qu ◽  
Song Li ◽  
Lihe Guo ◽  

2022 ◽  
Vol 281 ◽  
pp. 115046
Antigoni Barouni ◽  
Colin Lupton ◽  
Chulin Jiang ◽  
Abu Saifullah ◽  
Khaled Giasin ◽  

2022 ◽  
Vol 12 (2) ◽  
pp. 713
Esther Nneka Anosike-Francis ◽  
Paschal Ateb Ubi ◽  
Ifeyinwa Ijeoma Obianyo ◽  
Godwin Mong Kalu-Uka ◽  
Abdulhakeem Bello ◽  

This study investigates the feasibility of creating a clay polymer-based composite using cowpea husk (CPH) as filler for production of roof tiles. Polymeric composites were fabricated by mixing unsaturated polyester (UPT) resin with cowpea husk at different filler weights and curing. A hybrid composite was produced with the addition of 3 wt.% clay and all samples produced were subjected to flexural, hardness and dynamic mechanical analysis (DMA) tests. The effect of clay addition on the mechanical and thermo-mechanical behaviour of formulated composites was investigated. The morphological analysis of the mono and hybrid system shows a rough and coarse inhomogeneous surface with voids created due to the addition of CPH filler for the mono reinforced and clay uniformly filling the voids that were created by the CPH in the hybrid composite. It is observed that hardness, tensile modulus and flexural modulus of hybrid composites increase with an increase in the CPH contents, while the strength and flexural strength all decrease with filler content. The optimal composition was obtained using Grey relational analysis (GRA) at 18% CPH for both mono and hybrid composite. The results imply that the composite combination can be used in making rooftiles and/or also in applications where low strength is required.

Chillu Naresh ◽  
Gandluri Parameswarreddy ◽  
Asapu Vinaya Kumar ◽  
Rengaswamy Jayaganthan ◽  
Venkatachalam Subramanian ◽  

Abstract In the present study, hybrid composites are prepared by reinforcing various concentrations of high permittivity zirconia nanofiller into epoxy/CNT compositions to test their usability in EMI shielding applications in the X and Ku bands. ZrO2 nanofiller is added in different proportions to improve absorbance shielding while maintaining the composite conductivity uniform by adding constant CNT concentration to restrict the reflectance shielding. The microscopic studies have revealed an efficient dispersion of ZrO2 nanoparticles in the CNT networks and provided a smoother surface. The presence of zirconia nanofillers increased the dielectric properties, viz. the dielectric constant (194 at 0.1 Hz) and loss tangent (1.57 at 0.1 Hz), respectively, whereas the conductivity was found to be invariantly constant. The increased permittivity of composites enhanced the shielding by absorption, while the shielding by reflection is least influenced by the addition of zirconia nanofiller. The addition of zirconia nanofillers increased the permittivity and tan delta, allowing charges to accumulate at the interfacial areas for incoming EM radiations, resulting in increased absorbance shielding. Limiting the CNT concentration in all composites to the same level resulted in the formation of conductive networks, thus resulting in uniform reflectance shielding for all the hybrid composites in the present study. The dynamic mechanical analysis showed the improvement in the storage modulus and activation energy due to the enhanced interfacial adhesion and cross-linked polymer density.

2022 ◽  
Vol 12 (1) ◽  
Sanjay Mavinkere Rangappa ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin ◽  
Mohammad Jawaid ◽  
Togay Ozbakkaloglu

AbstractIn this work, fillers of waste chicken feather and abundantly available lignocellulose Ceiba Pentandra bark fibers were used as reinforcement with Biopoxy matrix to produce the sustainable composites. The aim of this work was to evaluate the mechanical, thermal, dimensional stability, and morphological performance of waste chicken feather fiber/Ceiba Pentandra bark fiber filler as potential reinforcement in carbon fabric-layered bioepoxy hybrid composites intended for engineering applications. These composites were prepared by a simple, low cost and user-friendly fabrication methods. The mechanical (tensile, flexural, impact, hardness), dimensional stability, thermal stability, and morphological properties of composites were characterized. The Ceiba Pentandra bark fiber filler-reinforced carbon fabric-layered bioepoxy hybrid composites display better mechanical performance compared to chicken feather fiber/Ceiba Pentandra bark fiber reinforced carbon fabrics layered bioepoxy hybrid composites. The Scanning electron micrographs indicated that the composites exhibited good adhesion at the interface of the reinforcement material and matrix system. The thermogravimetric studies revealed that the composites possess multiple degradation steps, however, they are stable up to 300 °C. The thermos-mechanical studies showed good dimensional stability of the composites. Both studied composites display better thermal and mechanical performance compared to neat bioepoxy or non-bioepoxy thermosets and are suitable for semi-structural applications.

2022 ◽  
Vol 30 (1) ◽  
pp. 397-412
Bassam Hamid Alaseel ◽  
Mohamed Ansari Mohamed Nainar ◽  
Noor Afeefah Nordin ◽  
Zainudin Yahya ◽  
Mohd Nazim Abdul Rahim

This study investigates the effect of water absorption on the flexural strength of kenaf/ glass/unsaturated polyester (UPE) hybrid composite solid round rods used for insulating material applications. Three volume fractions of kenaf/glass fibre 20:80 (KGPE20), 30:70 (KGPE30), and 40:60 (KGPE40) with three different fibre arrangement profiles of kenaf fibres were fabricated by using the pultrusion technique and were aimed at studying the effect of kenaf fibres arrangement profile and its content in hybrid composites. The fibre/ resin volume fraction was maintained constant at 60:40. The dispersion morphologies of tested specimens were observed using the scanning electron microscope (SEM). The findings were compared with pure glass fibre-reinforced UPE (control) composite. The water absorption results showed a clear indication of how it influenced the flexural strength of the hybrid and non-hybrid composites. The least affected sample was observed in the 30KGPE composite type, wherein the kenaf fibre was concentrated at the centre of a cross-section of the composite rod. The water absorption reduced the flexural strength by 7%, 40%, 24%, and 38% of glass/UPE (control), 20KGPE, 30KGPE, and 40KGPE composites, respectively. In randomly distributed composite types, the water absorption is directly proportional to the volume fraction of kenaf fibre. At the same time, flexural properties were inversely proportional to the volume fraction of kenaf fibres. Although the influence of water absorption on flexural strength is low, the flexural strength of pultruded hybrid composites was more influenced by the arrangement of kenaf fibre in each composite type than its fibre loading.

2022 ◽  
Vol 2022 ◽  
pp. 1-10
P. Gnaneswaran ◽  
V. Hariharan ◽  
Samson Jerold Samuel Chelladurai ◽  
G. Rajeshkumar ◽  
S. Gnanasekaran ◽  

In this investigation, aluminium-silicon-based alloy (LM6) with the addition of (0, 2.5, 5, and 10%) copper-coated short steel fiber and 5% boron carbide (B4C) element-strengthened composites was fabricated by the stir casting method. Mechanical properties and tribological behaviors of LM6-based hybrid composites were investigated, and microstructures of different castings were examined by an image analyzer. The test was conducted at different loads (10, 20, 30, and 40 N) and different sliding spaces (500, 1000, 1500, and 2000 m), respectively. The results revealed that the sample loaded with 10% of reinforcement recorded the highest tensile strength of 231 MPa. On the other hand, the hardness value increased from 71 to 144 BHN, when 15% of reinforcement was added to the sample. It was also noted that 10% copper-coated steel fiber improved wear resistance up to 50% when compared to LM6. A field emission scanning electron microscope was employed to observe the morphology of the worn surfaces of composites at different sliding distances and load conditions. The hybrid composite revealed that the combination of both short steel fibers and reinforcement of ceramic particles enhanced the mechanical properties, obtaining superior wear resistance.

Sign in / Sign up

Export Citation Format

Share Document