scholarly journals Semiclassical pair production rate for time-dependent electrical fields with more than one component: WKB-approach and world-line instantons

2014 ◽  
Vol 886 ◽  
pp. 1153-1176 ◽  
Author(s):  
Eckhard Strobel ◽  
She-Sheng Xue
2017 ◽  
Vol 32 (10) ◽  
pp. 1750045 ◽  
Author(s):  
J. Sadeghi ◽  
B. Pourhassan ◽  
S. Tahery ◽  
F. Razavi

In this paper, we consider a deformed AdS background and study the effect of deformation parameter on the pair production rate of the Schwinger effect. The electrostatic potential is important for the pair production in the holographic Schwinger effect. In this paper, we analyze the electrostatic potential in a deformed AdS background and investigate the effect of deformation parameter which may be useful to test the AdS/QCD. In the case of zero temperature, we find that the larger value of the deformation parameter leads to a smaller value of separation length of the test particles on the probe. Also, we find a finite maximum of separation length in the presence of modification parameter.


2015 ◽  
Vol 594 ◽  
pp. 012055
Author(s):  
Dániel Berényi ◽  
Sándor Varró ◽  
Péter Lévai ◽  
Vladimir V Skokov

2018 ◽  
Author(s):  
Sebastian Ehrhart ◽  
Eimear M. Dunne ◽  
Hanna E. Manninen ◽  
Tuomo Nieminen ◽  
Jos Lelieveld ◽  
...  

Abstract. Two new submodels for the Modular Earth Submodel System (MESSy) were developed. The New Aerosol Nucleation submodel (NAN) includes new parameterisations of aerosol particle formation rates published in recent years. These parameterisations include ion-induced nucleation and nucleation of pure organic species. NAN calculates the rate of new particle formation based on the aforementioned parameterisations for aerosol submodels in the ECHAM/MESSy Atmospheric chemistry - Climate (EMAC) model. The Ion pair production rate, needed to calculate the ion-induced or -mediated nucleation, is described using the new submodel IONS, which provides ion pair production rates for other submodels within the MESSy framework. Both new submodels were tested in EMAC simulations. These simulations showed good agreement with ground based observations.


1992 ◽  
Vol 13 (4) ◽  
pp. 241-250 ◽  
Author(s):  
S. A. Baran ◽  
I. H. Duru

2018 ◽  
Vol 11 (12) ◽  
pp. 4987-5001
Author(s):  
Sebastian Ehrhart ◽  
Eimear M. Dunne ◽  
Hanna E. Manninen ◽  
Tuomo Nieminen ◽  
Jos Lelieveld ◽  
...  

Abstract. Two new submodels for the Modular Earth Submodel System (MESSy) were developed. The New Aerosol Nucleation (NAN) submodel includes new parameterisations of aerosol particle formation rates published in recent years. These parameterisations include ion-induced nucleation and nucleation of pure organic species. NAN calculates the rate of new particle formation based on the aforementioned parameterisations for aerosol submodels in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The ion pair production rate, needed to calculate the ion-induced or ion-mediated nucleation, is described using the new submodel IONS, which provides ion pair production rates for other submodels within the MESSy framework. Both new submodels were tested in EMAC simulations. These simulations showed good agreement with ground-based observations.


Sign in / Sign up

Export Citation Format

Share Document