scholarly journals Whole-body radiation dosimetry of 2-[18F]Fluoro-A-85380 in human PET imaging studies

2005 ◽  
Vol 32 (8) ◽  
pp. 869-874 ◽  
Author(s):  
Sebastian L. Obrzut ◽  
Andrei O. Koren ◽  
Mark A. Mandelkern ◽  
Arthur L. Brody ◽  
Carl K. Hoh ◽  
...  
2015 ◽  
Vol 105 ◽  
pp. 1-5 ◽  
Author(s):  
Si-yang Wang ◽  
Xiao Bao ◽  
Ming-wei Wang ◽  
Yong-ping Zhang ◽  
Ying-jian Zhang ◽  
...  

2021 ◽  
Author(s):  
Teli Liu ◽  
Chen Liu ◽  
Zhongyi Zhang ◽  
Ning Zhang ◽  
Xiaoyi Guo ◽  
...  

Abstract PurposeDevelop a 64Cu labeled radiopharmaceutical targeting prostate specific membrane antigen (PSMA) and investigate its application for prostate cancer imaging. Methods64Cu-PSMA-BCH was prepared and investigated for stability, PSMA specificity and micro-PET imaging. With the approval of Ethics Committee of Beijing Cancer Hospital (No. 2017KT97), PET/CT imaging in 4 patients with suspected prostate cancer was performed and the radiation dosimetry was estimated. Then, PSMA PET-ultrasound image-guided biopsies were performed on 3 patients and the fine needle aspirates were further performed for autoradiography and immunohistochemistry analysis. Results64Cu-PSMA-BCH was prepared with high radiochemical yield and stability. In vivo study showed higher uptake in PSMA (+) 22Rv1 cells than PSMA (-) PC-3 cells (5.59±0.36 and 1.97±0.22 IA%/106 cells at 1 h). It accumulated in 22Rv1 tumor with increasing radioactivity uptake and T/N ratios from 1 h to 24 h post-injection. In patients with suspected prostate cancer, SUVmax and T/N ratios increased within 24 h post-injection. Compared with image at 1 h post-injection, more tumor lesions were detected at 4 h and 24 h post-injection. The human organ radiation dosimetry showed gallbladder wall was most critical, liver and kidneys were followed, and the whole-body effective dose was 0.0292 mSv/MBq. Two fine needle aspirates obtained by PET-ultrasound guided targeted biopsy showed high radioactive signal by autoradiography, with 100% PSMA expression in cytoplasm and 30% expression in nucleus. Conclusion64Cu-PSMA-BCH was PSMA specific and showed high stability in vivo with lower uptake in liver than 64Cu-PSMA-617. Biodistribution in mice and PCa patients showed similar profile compared with other PSMA ligands and it was safe with moderate effective dosimetry. The increased tumor uptake and T/N ratios by delayed imaging may facilitate the detection of small lesions and guiding targeted biopsies.


1997 ◽  
Vol 24 (4) ◽  
pp. 311-318 ◽  
Author(s):  
S.M. Moerlein ◽  
J.S. Perlmutter ◽  
P.D. Cutler ◽  
M.J. Welch

2007 ◽  
Vol 35 (4) ◽  
pp. 771-778 ◽  
Author(s):  
Jo Ann V. Antenor-Dorsey ◽  
Richard Laforest ◽  
Stephen M. Moerlein ◽  
Tom O. Videen ◽  
Joel S. Perlmutter

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Wencke Lehnert ◽  
Patrick J. Riss ◽  
Ana Hurtado de Mendoza ◽  
Sandra Lopez ◽  
Gonzalo Fernandez ◽  
...  

Abstract Purpose [18F]PR04.MZ is a new PET imaging agent for dopamine transporters, providing excellent image quality and allowing for the evaluation of patients with movement disorders such as Parkinson’s disease. The objective of this study was to evaluate the biodistribution and radiation dosimetry of [18F]PR04.MZ by serial PET imaging. Methods Six healthy subjects (n = 3 males, n = 3 females) were enrolled in this study. A series of 14 whole-body PET/CT scans were acquired until 5.5 h post-injection of 200 ± 11 MBq of [18F]PR04.MZ. After rigid co-registration, volumes of interest were outlined either on CT or PET images. Time-integrated activity coefficients were calculated for selected source organs. Organ absorbed doses, and the effective dose were calculated using IDAC-Dose 2.1. Results Physiological uptake of [18F]PR04.MZ was mainly observed in the striatum, brain, liver, gall bladder, intestine, red marrow and cortical bone. [18F]PR04.MZ was primarily excreted via hepatobiliary clearance and, to a lower extent, via renal clearance. The normalized absorbed doses were highest in gall bladder wall (32.2 ± 6.4 µGy/MBq), urinary bladder wall (27.2 ± 4.5 µGy/MBq), red marrow (26.5 ± 1.4 µGy/MBq), cortical bone surface (26.3 ± 2.5 µGy/MBq), liver (22.5 ± 1.8 µGy/MBq) and kidneys (21.8 ± 1.1 µGy/MBq). The effective dose according to ICRP 60 and 103 was 16.3 ± 1.1 and 16.6 ± 1.5 µSv/MBq, respectively. Conclusion [18F]PR04.MZ has a favourable dosimetry profile, comparable to those of other 18F-labelled PET tracers, and is suitable for larger clinical applications. Trial registration CEC SSM Oriente, Santiago, Chile, permit 20140520.


PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0186340 ◽  
Author(s):  
Pradeep K. Garg ◽  
Stephen J. Lokitz ◽  
Lisa Truong ◽  
Burton Putegnat ◽  
Courtney Reynolds ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. e002025
Author(s):  
Marcus P Kelly ◽  
Sosina Makonnen ◽  
Carlos Hickey ◽  
T Cody Arnold ◽  
Jason T Giurleo ◽  
...  

BackgroundProgrammed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) blocking antibodies including cemiplimab have generated profound clinical activity across diverse cancer types. Tumorous PD-L1 expression, as assessed by immunohistochemistry (IHC), is an accepted predictive marker of response to therapy in some cancers. However, expression is often dynamic and heterogeneous, and therefore not reliably captured by IHC from tumor biopsies or archival samples. Thus, there is significant need for accurate whole-body quantification of PD-L1 levels.MethodsWe radiolabeled the novel human anti-PD-L1 antibody REGN3504 with zirconium-89 (89Zr) using the chelator p-SCN-Bn-Deferoxamine to enable non-invasive immuno-positron emission tomography (immuno-PET) of PD-L1 expression. PET imaging assessed the localization of 89Zr-REGN3504 to multiple human tumor xenografts. Mice genetically humanized for PD-1 and PD-L1 were used to assess the biodistribution of 89Zr-REGN3504 to normal tissues and the estimated human radiation dosimetry of 89Zr-REGN3504 was also determined. Pharmacokinetics of REGN3504 was assessed in monkeys.ResultsClear localization of 89Zr-REGN3504 to human tumor xenografts was observed via PET imaging and ex vivo biodistribution studies demonstrated high (fourfold to sixfold) tumor:blood ratios. 89Zr-REGN3504 specifically localized to spleen and lymph nodes in the PD-1/PD-L1 humanized mice. 89Zr-REGN3504 immuno-PET accurately detected a significant reduction in splenic PD-L1 positive cells following systemic treatment with clodronate liposomes. Radiation dosimetry suggested absorbed doses would be within guidelines for other 89Zr radiolabeled, clinically used antibodies. Pharmacokinetics of REGN3504 was linear.ConclusionThis work supports the clinical translation of 89Zr-REGN3504 immuno-PET for the assessment of PD-L1 expression. Future clinical studies will aim to investigate the utility of 89Zr-REGN3504 immuno-PET for predicting and monitoring response to anti-PD-1 therapy.


2013 ◽  
Vol 40 (5) ◽  
pp. 795-796
Author(s):  
Jo Ann V. Antenor-Dorsey ◽  
Richard Laforest ◽  
Stephen M. Moerlein ◽  
Tom O. Videen ◽  
Joel S. Perlmutter

Sign in / Sign up

Export Citation Format

Share Document