Evaluation of a foot-to-foot impedance meter measuring extracellular fluid volume in addition to fat-free mass and fat tissue mass

Nutrition ◽  
2005 ◽  
Vol 21 (7-8) ◽  
pp. 815-824 ◽  
Author(s):  
Michel Y. Jaffrin ◽  
Roland Kieffer ◽  
Marie-Valérie Moreno
Author(s):  
Evan C. Ray ◽  
Ashley Pitzer ◽  
Tracey Lam ◽  
Alexa Cross Jordahl ◽  
Ritam Patel ◽  
...  

The epithelial Na+ channel (ENaC) promotes the absorption of Na+ in the aldosterone-sensitive distal nephron, colon, and respiratory epithelia. Deletion of genes encoding ENaC's subunits results in early post-natal mortality. We present initial characterization of a mouse with dramatically suppressed expression of ENaC's γ subunit. We used this hypomorphic (γmt) allele to explore the importance of this subunit in homeostasis of electrolytes and body fluid volume. At baseline, γ subunit expression in γmt/mt mice was markedly suppressed in kidney and lung, while electrolytes resembled those of littermate controls. Aldosterone levels in γmt/mt mice exceeded those seen in littermate controls. Quantitative magnetic resonance (QMR) measurement of body composition revealed similar baseline body water, lean tissue mass, and fat tissue mass in γmt/mt mice and controls. γmt/mt mice exhibited a more rapid decline in body water and lean tissue mass in response to a low Na+ diet than controls. Replacement of drinking water with 2% saline selectively and transiently increased body water and lean tissue mass in γmt/mt mice, relative to controls. Lower blood pressures were variably observed in γmt/mt mice on a high salt diet, compared to controls. γmt/mt also exhibited reduced diurnal blood pressure variation, a "non-dipping" phenotype, on a high Na+ diet. While ENaC in renal tubules and colon work to prevent extracellular fluid volume depletion, our observations suggest that ENaC in other tissues may participate in regulating extracellular fluid volume and blood pressure.


2021 ◽  
Author(s):  
Evan C. Ray ◽  
Alexa Jordahl ◽  
Allison Marciszyn ◽  
Aaliyah Winfrey ◽  
Tracey Lam ◽  
...  

AbstractThe epithelial Na+ channel (ENaC) promotes the absorption of Na+ in the aldosterone-sensitive distal nephron, colon, and respiratory epithelia. Deletion of genes encoding ENaC’s subunits results in early post-natal mortality. We present initial characterization of a mouse with dramatically suppressed expression of the γ subunit. We use this hypomorphic (γmt) allele to explore the importance of ENaC’s γ subunit in homeostasis of electrolytes and body fluid volume. At baseline, γ subunit expression in γmt/mt mice is markedly suppressed in kidney and lung, while electrolytes resemble those of littermate controls. Challenge with a high K+ diet does not cause significant differences in blood K+, but provokes higher aldosterone in γmt/mt mice than controls. Quantitative magnetic resonance (QMR) measurement of body composition reveals similar baseline body water, lean tissue mass, and fat tissue mass in γmt/mt mice and controls. Surprisingly, euvolemia is sustained without significant changes in aldosterone or atrial natriuretic peptide. γmt/mt mice exhibit a more rapid decline in body water and lean tissue mass in response to a low Na+ diet than controls. Replacement of drinking water with 2% saline induces dramatic increases in body fat in both genotypes, and a selective transient increase in body water and lean tissue mass in γmt/mt mice. While ENaC in renal tubules and colon work to prevent extracellular fluid volume depletion, our observations suggest that ENaC in non-epithelial tissues may have a role in preventing extracellular fluid volume overload.


1978 ◽  
Vol 28 ◽  
pp. 179
Author(s):  
Toshiaki Kadokawa ◽  
Kanno Hosoki ◽  
Kunihiko Takeyama ◽  
Hisao Minato ◽  
Masanao Shimizu

1986 ◽  
Vol 251 (5) ◽  
pp. R947-R956 ◽  
Author(s):  
K. M. Verburg ◽  
R. H. Freeman ◽  
J. O. Davis ◽  
D. Villarreal ◽  
R. C. Vari

The aim of this study was to examine the changes in the concentration of plasma immunoreactive atrial natriuretic factor (iANF) that occur in response to expansion or depletion of the extracellular fluid volume in conscious dogs. The plasma iANF concentration was also measured postprandially after the ingestion of a meal containing 125 meq of sodium. Postprandial plasma iANF increased 45% (P less than 0.05) above the base-line concentration, and this increase was accompanied by a brisk natriuresis. After a low-sodium meal, however, plasma iANF and sodium excretion failed to increase. The plasma iANF concentration increased from 57 +/- 5 to 139 +/- 36 pg/ml (P less than 0.05) immediately after volume expansion with intravenous isotonic saline infusion (2.5% body wt) administered over a 30-min period; plasma iANF remained elevated at 90 +/- 14 pg/ml (P less than 0.05) for an additional 30 min before returning toward preinfusion levels. Plasma iANF decreased 45% from 78 +/- 17 to 43 +/- 7 pg/ml (P less than 0.05) in response to the administration of ethacrynic acid (2.0 mg/kg, iv bolus) that produced an estimated 15% depletion of intravascular volume. In additional experiments the infusion of synthetic alpha-human ANF at 100 and 300 ng X kg-1 X min-1 increased (P less than 0.05) both the plasma iANF concentration and the urinary excretion of iANF. This study demonstrates that the secretion of ANF is consistently influenced by changes in the extracellular fluid volume. Furthermore, the results support the concept that ANF functions to increase postprandial sodium excretion following the ingestion of a high-sodium meal.


1984 ◽  
Vol 247 (4) ◽  
pp. R750-R752
Author(s):  
U. Ackermann ◽  
T. G. Irizawa

Extracellular fluid volume (by 22Na) and extent of 4-h [3H]fucose incorporation into atrial-specific granules were measured in deoxycorticosterone acetate (DOCA)/salt-loaded or Na-deficient rats. The natriuretic potency of extracts from their atria was also measured in assay rats. DOCA/salt-treated animals had a significantly greater extracellular volume, a significantly greater degree of fucose uptake, and a significantly more potent diuretic and natriuretic effect than did Na-deficient rats. These observations, together with the known decrease in atrial granularity with DOCA treatment, suggest that a chronic increase in extracellular fluid volume is associated with increased synthesis and metabolism of atrial natriuretic factor. They also confirm the finding reported by others that granularity and natriuretic potency are not always directly related. It may be that visible granules represent a peptide storage form that requires further processing to become natriuretic.


Sign in / Sign up

Export Citation Format

Share Document