scholarly journals Passive flow control for aerodynamic performance enhancement of airfoil with its application in Wells turbine – Under oscillating flow condition

2017 ◽  
Vol 136 ◽  
pp. 31-53 ◽  
Author(s):  
Ahmed S. Shehata ◽  
Qing Xiao ◽  
Khalid M. Saqr ◽  
Ahmed Naguib ◽  
Day Alexander
2020 ◽  
Vol 60 (5) ◽  
pp. 1135-1146
Author(s):  
Chen Rao ◽  
Hao Liu

Synopsis As a sophisticated micro device for noise reduction, the owl-inspired leading-edge (LE) serrations have been confirmed capable of achieving passive control of laminar-turbulent transition while normally paying a cost of lowering the aerodynamic performance in low Reynolds number (Re∼O[103]) regime. In order to explore potential applications of the owl-inspired serrated airfoils or blades in developing low noise wind turbines or multi-copters normally operating at higher Res, we conducted a large-eddy simulation (LES)-based study of Re effects on the aerodynamic performance of 2D clean and serrated models. Our results show that the LE serrations keep working effectively in mitigating turbulent fluctuations over a broad range of Re (O[103] ∼ O[105]), capable of achieving marked improvement in lift-to-drag ratio with increasing Res. As the aeroacoustic fields are in close association with the propagation of the turbulence sources, it is observed that the tradeoff between passive mitigation of turbulent fluctuations (hence aeroacoustic noise suppression) and aerodynamic performance can be noticeably mitigated at large angles of attack (AoAs) and at high Res. This indicates that the LE serrations present an alternative passive flow control mechanism at high Res through a straightforward local excitation of the flow transition while capable of mitigating the turbulent intensity passively. We further developed a 3D LES model of clean and partially serrated rectangular wings to investigate the effects of the LE serrations’ distribution on aerodynamic features, on the basis of the observation that longer serrations are often distributed intensively in the mid-span of real owl’s feathers. We find that the mid-span distributed LE serrations can facilitate the break-up of LE vortices and the turbulent transition passively and effectively while achieving a low level of turbulence kinetic energy over the upper suction surface of the wing.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2091 ◽  
Author(s):  
Unai Fernandez-Gamiz ◽  
Macarena Gomez-Mármol ◽  
Tomas Chacón-Rebollo

Gurney flaps (GFs) and microtabs (MTs) are two of the most frequently used passive flow control devices on wind turbines. They are small tabs situated close to the airfoil trailing edge and normal to the surface. A study to find the most favorable dimension and position to improve the aerodynamic performance of an airfoil is presented herein. Firstly, a parametric study of a GF on a S810 airfoil and an MT on a DU91(2)250 airfoil was carried out. To that end, 2D computational fluid dynamic simulations were performed at Re = 106 based on the airfoil chord length and using RANS equations. The GF and MT design parameters resulting from the computational fluid dynamics (CFD) simulations allowed the sizing of these passive flow control devices based on the airfoil’s aerodynamic performance. In both types of flow control devices, the results showed an increase in the lift-to-drag ratio for all angles of attack studied in the current work. Secondly, from the data obtained by means of CFD simulations, a regular function using the proper orthogonal decomposition (POD) was used to build a reduced order method. In both flow control cases (GFs and MTs), the recursive POD method was able to accurately and very quickly reproduce the computational results with very low computational cost.


2021 ◽  
Author(s):  
Anurag Bhattacharyya ◽  
Mark Bashkawi ◽  
Se Yeon Kim ◽  
Wanzheng Zheng ◽  
Theresa Saxton-Fox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document