DETACHED EDDY SIMULATION OF A PASSIVE FLOW CONTROL FOR AERODYNAMIC PERFORMANCE ENHANCEMENT AND SEPARATION REDUCTION OF A WIND TURBINE BLADE

2018 ◽  
Vol 23 (4) ◽  
pp. 24-32
Author(s):  
Mohammad Moshfeghi ◽  
Shahrokh Shams ◽  
Morteza Ramezani ◽  
Nahmkeon Hur
2018 ◽  
Vol 42 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Edison H Caicedo ◽  
Muhammad S Virk

This article describes a multiphase computational fluid dynamics–based numerical study of the aeroacoustics response of symmetric and asymmetric wind turbine blade profiles in both normal and icing conditions. Three different turbulence models (Reynolds-averaged Navier–Stokes, detached eddy simulation, and large eddy simulation) have been used to make a comparison of numerical results with the experimental data, where a good agreement is found between numerical and experimental results. Detached eddy simulation turbulence model is found suitable for this study. Later, an extended computational fluid dynamics–based aeroacoustics parametric study is carried out for both normal (clean) and iced airfoils, where the results indicate a significant change in sound levels for iced profiles as compared to clean.


2021 ◽  
Author(s):  
Elena-Alexandra Chiulan ◽  
Costin Ioan Cosoiu ◽  
Andrei-Mugur Georgescu ◽  
Anton Anton ◽  
Mircea Degeratu

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3330 ◽  
Author(s):  
Jianhua Xu ◽  
Zhonghua Han ◽  
Xiaochao Yan ◽  
Wenping Song

A new airfoil family, called NPU-MWA (Northwestern Polytechnical University Multi-megawatt Wind-turbine A-series) airfoils, was designed to improve both aerodynamic and structural performance, with the outboard airfoils being designed at high design lift coefficient and high Reynolds number, and the inboard airfoils being designed as flat-back airfoils. This article aims to design a multi-megawatt wind turbine blade in order to demonstrate the advantages of the NPU-MWA airfoils in improving wind energy capturing and structural weight reduction. The distributions of chord length and twist angle for a 5 MW wind turbine blade are optimized by a Kriging surrogate model-based optimizer, with aerodynamic performance being evaluated by blade element-momentum theory. The Reynolds-averaged Navier–Stokes equations solver was used to validate the improvement in aerodynamic performance. Results show that compared with an existing NREL (National Renewable Energy Laboratory) 5 MW blade, the maximum power coefficient of the optimized NPU 5 MW blade is larger, and the chord lengths at all span-wise sections are dramatically smaller, resulting in a significant structural weight reduction (9%). It is shown that the NPU-MWA airfoils feature excellent aerodynamic and structural performance for the design of multi-megawatt wind turbine blades.


2020 ◽  
Vol 198 ◽  
pp. 104398 ◽  
Author(s):  
Yunchao Yang ◽  
William Bradford Bartow ◽  
Gecheng Zha ◽  
Heyong Xu ◽  
Jianlei Wang

Sign in / Sign up

Export Citation Format

Share Document