Fully nonlinear simulation of wave interaction with a cylindrical wave energy converter in a numerical wave tank

2018 ◽  
Vol 152 ◽  
pp. 210-222 ◽  
Author(s):  
Arash Abbasnia ◽  
C. Guedes Soares
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Sung-Jae Kim ◽  
Weoncheol Koo

The hydrodynamic performance of a vertical cylindrical heaving buoy-type floating wave energy converter under large-amplitude wave conditions was calculated. For this study, a three-dimensional fully nonlinear potential-flow numerical wave tank (3D-FN-PNWT) was developed. The 3D-FN-PNWT was based on the boundary element method with Rankine panels. Using the mixed Eulerian–Lagrangian (MEL) method for water particle movement, nonlinear waves were produced in the PNWT. The PNWT can calculate the wave forces acting on the buoy accurately using an acceleration potential approach. The constant panels and least-square gradient reconstruction method were applied to regridding of computational boundaries. An artificial damping zone was employed to satisfy the open-sea conditions at the end free surface boundaries. The diffraction and radiation problems were solved, and their solutions were confirmed by a comparison with previous studies. The interaction of the incident wave, floating body, and power take-off (PTO) behavior was examined in the time domain using the developed 3D-FN-PNWT. From comparison, the difference between the conventional linear analysis and the nonlinear analysis in large-amplitude waves was examined.


2020 ◽  
Vol 146 ◽  
pp. 2499-2516 ◽  
Author(s):  
Christian Windt ◽  
Josh Davidson ◽  
Edward J. Ransley ◽  
Deborah Greaves ◽  
Morten Jakobsen ◽  
...  

Author(s):  
Sung-Jae Kim ◽  
Weoncheol Koo ◽  
Moo-Hyun Kim

Abstract The aim of this paper is to evaluate the hydrodynamic performance of a heaving buoy type wave energy converter (WEC) and power take-off (PTO) system. To simulate the nonlinear behavior of the WEC with PTO system, a three-dimensional potential numerical wave tank (PNWT) was developed. The PNWT is a numerical analysis tool that can accurately reproduce experiments in physical wave tanks. The developed time-domain PNWT utilized the previously developed NWT technique and newly adopted the side wall damping area. The PNWT is based on boundary element method with constant panels. The mixed Eulerian-Lagrangian method (MEL) and acceleration potential approach were adopted to simulate the nonlinear behaviors of free-surface nodes associated with body motions. The PM spectrum as an irregular incident wave condition was applied to the input boundary. A floating or fixed type WEC structure was placed in the center of the computational domain. A hydraulic PTO system composed of a hydraulic cylinder, hydraulic motor and generator was modeled with approximate Coulomb damping force and applied to the WEC system. Using the integrated numerical model of the WEC with PTO system, nonlinear interaction of irregular waves, the WEC structure, and the PTO system were simulated in the time domain. The optimal hydraulic pressure of the PTO condition was predicted. The hydrodynamic performance of the WEC was evaluated by comparing the linear and nonlinear analytical results and highlighted the importance accounting for nonlinear free surfaces.


2021 ◽  
Vol 222 ◽  
pp. 108619
Author(s):  
Milad Zabihi ◽  
Said Mazaheri ◽  
Masoud Montazeri Namin ◽  
Ahmad Rezaee Mazyak

2019 ◽  
Vol 7 (6) ◽  
pp. 171 ◽  
Author(s):  
Guoheng Wu ◽  
Zhongyue Lu ◽  
Zirong Luo ◽  
Jianzhong Shang ◽  
Chongfei Sun ◽  
...  

Nowadays, drifters are used for a wide range of applications for researching and exploring the sea. However, the power constraint makes it difficult for their sampling intervals to be smaller, meaning that drifters cannot transmit more accurate measurement data to satellites. Furthermore, due to the power constraint, a modern Surface Velocity Program (SVP) drifter lives an average of 400 days before ceasing transmission. To overcome the power constraint of SVP drifters, this article proposes an adaptively counter-rotating wave energy converter (ACWEC) to supply power for drifters. The ACWEC has the advantages of convenient modular integration, simple conversion process, and minimal affection by the crucial sea environment. This article details the design concept and working principle, and the interaction between the wave energy converter (WEC) and wave is presented based on plane wave theory. To verify the feasibility of the WEC, the research team carried out a series of experiments in a wave tank with regular and irregular waves. Through experiments, it was found that the power and efficiency of the ACWEC are greatly influenced by parameters such as wave height and wave frequency. The maximum output power of the small scale WEC in a wave tank is 6.36 W, which allows drifters to detect ocean data more frequently and continuously.


Sign in / Sign up

Export Citation Format

Share Document