rotating wave
Recently Published Documents


TOTAL DOCUMENTS

414
(FIVE YEARS 53)

H-INDEX

37
(FIVE YEARS 4)

Laser Physics ◽  
2022 ◽  
Vol 32 (2) ◽  
pp. 025203
Author(s):  
Zhe Jin ◽  
Tian Tian ◽  
Wentao Wang ◽  
Yumei Long ◽  
Xue Zhang ◽  
...  

Abstract In this paper, we study the dynamical Casimir–Polder force between an ensemble of identical two-level atoms and the wall of a rectangle waveguide with semi-infinite length. With the presence of both the rotating wave and counter rotating wave terms in the light–matter interaction Hamiltonian, we utilize the perturbation theory to solve the Heisenberg equation. Up to the seconder of coupling strength, we obtain the energy shift analytically and the Casimir–Polder force numerically. Our result shows that the dynamical behavior of the Casimir force is closely connected to the photon propagation in the waveguide. Therefore, we hope this work will stimulate the studies about the quantum effect in waveguide scenario.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 384
Author(s):  
Yan-Na Zhao ◽  
Tie Wang ◽  
Dong-Yang Wang ◽  
Xue Han ◽  
Shou Zhang ◽  
...  

We investigate the optical amplification of the output field and fast-slow light effect in a three-mode cavity optomechanical system without rotating wave approximation and discuss two ways of realizing the optical amplification effect. Resorting to the Coulomb coupling between the nanomechanical resonators, the asymmetric double optomechanically induced amplification effect can be achieved by utilizing the counterrotating term. Moreover, we find a remarkable optical amplification effect and observe the prominent fast-slow light effect at the singular point since the introduction of mechanical gain. Meanwhile, the transmission rate of the output field is increased by four orders of magnitude and the group delay time can reach in the order of 105μs. Our work is of great significance for the potential applications of optomechanically induced amplification in quantum information processing and quantum precision measurement.


2021 ◽  
pp. 104655
Author(s):  
Gilberto Medeiros Nakamura ◽  
Tiago José Arruda ◽  
Alexandre Souto Martinez

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shumpei Masuda ◽  
Toyofumi Ishikawa ◽  
Yuichiro Matsuzaki ◽  
Shiro Kawabata

AbstractPumped at approximately twice the natural frequency, a Josephson parametric oscillator called parametron or Kerr parametric oscillator shows self-oscillation. Quantum annealing and universal quantum computation using self-oscillating parametrons as qubits were proposed. However, controls of parametrons under the pump field are degraded by unwanted rapidly oscillating terms in the Hamiltonian, which we call non-resonant rapidly oscillating terms (NROTs) coming from the violation of the rotating wave approximation. Therefore, the pump field can be an intrinsic origin of the imperfection of controls of parametrons. Here, we theoretically study the influence of the NROTs on the accuracy of controls of a parametron: a cat-state creation and a single-qubit gate. It is shown that there is a trade-off relationship between the suppression of the nonadiabatic transitions and the validity of the rotating wave approximation in a conventional approach. We also show that the tailored time dependence of the detuning of the pump field can suppress both of the nonadiabatic transitions and the disturbance of the state of the parametron due to the NROTs.


2021 ◽  
Vol 45 (3) ◽  
pp. 372-381
Author(s):  
V.A. Mikhailov ◽  
N.V. Troshkin

In this paper we investigate non-Markovian evolution of a two-level system (qubit) in a bosonic bath under influence of an external classical fluctuating environment. The interaction with the bath has the Lorentzian spectral density, and the fluctuating environment (stochastic field) is represented by a set of Ornstein-Uhlenbeck processes. Each of the subenvironments of the composite environment is able to induce non-Markovian dynamics of the two-level system. By means of the numerically exact method of hierarchical equations of motion, we study steady states of the two-level system, evolution of the reduced density matrix and the equilibrium emission spectra in dependence on the frequency cutoffs and the coupling strengths of the subenvironments. Additionally, we investigate the impact of the rotating wave approximation (RWA) for the interaction with the bath on accuracy of the results.


Sign in / Sign up

Export Citation Format

Share Document