Finite-time sideslip observer-based synchronized path-following control of multiple unmanned underwater vehicles

2020 ◽  
Vol 217 ◽  
pp. 107941 ◽  
Author(s):  
Xingru Qu ◽  
Xiao Liang ◽  
Yuanhang Hou ◽  
Ye Li ◽  
Rubo Zhang
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yintao Wang ◽  
Yao Yao

This work mainly studies the problem of how to steer a group of underactuated unmanned underwater vehicles UUVs to specified paths coordinately. The algorithm proposed consists of a single path-following strategy and a path parameter consensus tracking strategy. In the context of single path following, we describe the path to be followed by an arbitrary scalar, then by using Lyapunov and backstepping theories, a single path-following strategy was derived to drive each UUV move to the predefined path asymptotically. In the coordinated level, we focus on the coordination for the scalar parameters. In particular, we show that all the path parameters can track with a virtual reference leader who is a neighbor of only a subset of following UUVs with local interactions. The stability of the closed system was proved and analyzed theoretically. The validity of the algorithm proposed is supported by simulation results.


2021 ◽  
Vol 224 ◽  
pp. 108660
Author(s):  
Jun Nie ◽  
Haixia Wang ◽  
Xiao Lu ◽  
Xiaogong Lin ◽  
Chunyang Sheng ◽  
...  

2020 ◽  
Vol 10 (18) ◽  
pp. 6447
Author(s):  
Mingyu Fu ◽  
Lulu Wang

This paper develops a finite-time path following control scheme for an underactuated marine surface vessel (MSV) with external disturbances, model parametric uncertainties, position constraint and input saturation. Initially, based on the time-varying barrier Lyapunov function (BLF), the finite-time line-of-sight (FT-LOS) guidance law is proposed to obtain the desired yaw angle and simultaneously constrain the position error of the underactuated MSV. Furthermore, the finite-time path following constraint controllers are designed to achieve tracking control in finite time. Additionally, considering the model parametric uncertainties and external disturbances, the finite-time disturbance observers are proposed to estimate the compound disturbance. For the sake of avoiding the input saturation and satisfying the requirements of finite-time convergence, the finite-time input saturation compensators were designed. The stability analysis shows that the proposed finite-time path following control scheme can strictly guarantee the constraint requirements of the position, and all error signals of the whole control system can converge into a small neighborhood around zero in finite time. Finally, comparative simulation results show the effectiveness and superiority of the proposed finite-time path following control scheme.


Sign in / Sign up

Export Citation Format

Share Document