consensus tracking
Recently Published Documents





2022 ◽  
Yang Yang ◽  
Yuwei Zhang

Abstract A fixed-time active disturbance rejection control (FTADRC) consensus tracking strategy is proposed for a class of non-affine nonlinear multi-agent systems with an event-trigger-based communication. Non-affine followers are transformed into affine ones by combining the implicit function theorem with the mean value theorem. A distributed event-triggered estimator is introduced based on its neighbor output information. It is for estimation of a leader’s signal for parts of followers, who are not able to access the leader signal in a direct manner. A distributed FTADRC control strategy is then developed via an event-triggered communication in the framework of backstepping technology. With the help of the fixed-time control, the settling time of an MAS is assignable and independent on initial conditions. Extended state observers and tracking differentiators are employed to compensate unknown dynamics of each follower in real time and estimate derivatives of virtual control laws, respectively. It is proven theoretically that the MAS achieves input-to-state practically stability and the consensus tracking error converges to a neighborhood around the origin in a fixed time. Also, Zeno behavior is excluded. Finally, two examples are performed to illustrate the effectiveness of the proposed strategy.

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 33
Ziyi Liu ◽  
Hadi Jahanshahi ◽  
Christos Volos ◽  
Stelios Bekiros ◽  
Shaobo He ◽  

Over the last years, distributed consensus tracking control has received a lot of attention due to its benefits, such as low operational costs, high resilience, flexible scalability, and so on. However, control methods that do not consider faults in actuators and control agents are impractical in most systems. There is no research in the literature investigating the consensus tracking of supply chain networks subject to disturbances and faults in control input. Motivated by this, the current research studies the fault-tolerant, finite-time, and smooth consensus tracking problems for chaotic multi-agent supply chain networks subject to disturbances, uncertainties, and faults in actuators. The chaotic attractors of a supply chain network are shown, and its corresponding multi-agent system is presented. A new control technique is then proposed, which is suitable for distributed consensus tracking of nonlinear uncertain systems. In the proposed scheme, the effects of faults in control actuators and robustness against unknown time-varying disturbances are taken into account. The proposed technique also uses a finite-time super-twisting algorithm that avoids chattering in the system’s response and control input. Lastly, the multi-agent system is considered in the presence of disturbances and actuator faults, and the proposed scheme’s excellent performance is displayed through numerical simulations.

Sign in / Sign up

Export Citation Format

Share Document