Flap-type wave energy converter arrays: Nonlinear dynamic analysis

2021 ◽  
Vol 236 ◽  
pp. 109463
Author(s):  
Saghy Saeidtehrani
Author(s):  
P. D. Spanos ◽  
A. Richichi ◽  
F. Arena

Floating oscillating-bodies are a kind of wave energy converter developed for harvesting the great amount of energy related to water waves (see Falcão [1] for a review). Although the assumptions of small-wave and linear behavior of oscillating system are reasonable for most of the time during which a floating point harvester is in operation, nonlinear effects may be significant in extreme sea states situations. In this paper a nonlinear dynamic analysis of a point harvester wave energy converter is conducted. The model involves a tightly moored single-body floating device; it captures motion in the horizontal and vertical directions. The stiffness and damping forces, being functions of the displacement and velocity components, make the system nonlinear and coupled. For the input forces, the erratic nature of the waves is modeled by a stochastic process. Specifically, wind-generated waves are modeled by means of the JONSWAP spectrum. The method of statistical linearization [2] is used to determine iteratively the effective linear stiffness and damping matrices and response statistics of the system and to proceed to conducting a dynamic analysis of the harvester model. The reliability of the linearization based approach is demonstrated by comparison with time domain integration, Monte Carlo simulation, data. This approach offers the appealing feature of conducting efficiently a variety of parameter studies which can expedite preliminary evaluations, inter alia, of competing design scenarios for the energy converter in a stochastic environmental setting.


Author(s):  
Yutaro Sasahara ◽  
Mitsuhiro Masuda ◽  
Kiyokazu Minami

When concrete examination towards utilization is needed, it is necessary to estimate the safety and the performance of a floating Oscillation Water Column (OWC)-type wave energy converter under abnormal oceanographic phenomenon such as large waves, wave impact force, deck wetness and complex motion of mooring system. Therefore, to choose a proper numerical method is important. This present paper describes a fundamental study about estimation of safety and performance of floating OWC-type wave energy converter using the two-phase flow MPS method. In this research, firstly, new algorithm is installed in order to solve problems of the two-phase flow MPS method. Secondly, applicability to an response analysis of a wharf installation type OWC-WEC of the improved MPS method is examined by wave pressure acting to the OWC-WEC and response in the air chamber of the OWC-WEC.


2011 ◽  
pp. 1216-1223
Author(s):  
BYUNG-HAK CHO ◽  
SHIN-YEOL PARK ◽  
DONG-SOON YANG ◽  
KYUNG-SHIK CHOI ◽  
BYUNG-CHUL PARK

2021 ◽  
Author(s):  
Sebastian Konrad Sorek ◽  
Wojciech Florian Sulisz

Energy ◽  
2021 ◽  
Vol 215 ◽  
pp. 119107
Author(s):  
Changhai Liu ◽  
Min Hu ◽  
Wenzhi Gao ◽  
Jian Chen ◽  
Yishan Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document