Phase portrait analysis of laminar separation bubble and ground clearance interaction at critical (low) Reynolds number flow

2021 ◽  
Vol 238 ◽  
pp. 109731
Author(s):  
Hossein Jabbari ◽  
Ali Esmaeili ◽  
Shayan Rabizadeh
1979 ◽  
Vol 46 (3) ◽  
pp. 510-512 ◽  
Author(s):  
M. B. Stewart ◽  
F. A. Morrison

Low Reynolds number flow in and about a droplet is generated by an electric field. Because the creeping flow solution is a uniformly valid zeroth-order approximation, a regular perturbation in Reynolds number is used to account for the effects of convective acceleration. The flow field and resulting deformation are predicted.


AIAA Journal ◽  
1972 ◽  
Vol 10 (10) ◽  
pp. 1381-1382
Author(s):  
CLARENCE W. KITCHENS ◽  
CLARENCE C. BUSH

2010 ◽  
Vol 39 (9) ◽  
pp. 1529-1541 ◽  
Author(s):  
Shengyi Wang ◽  
Derek B. Ingham ◽  
Lin Ma ◽  
Mohamed Pourkashanian ◽  
Zhi Tao

Robotica ◽  
2021 ◽  
pp. 1-17
Author(s):  
Hossein Nejat Pishkenari ◽  
Matin Mohebalhojeh

Abstract Microrobots with their promising applications are attracting a lot of attention currently. A microrobot with a triangular mechanism was previously proposed by scientists to overcome the motion limitations in a low-Reynolds number flow; however, the control of this swimmer for performing desired manoeuvres has not been studied yet. Here, we have proposed some strategies for controlling its position. Considering the constraints on arm lengths, we proposed an optimal controller based on quadratic programming. The simulation results demonstrate that the proposed optimal controller can steer the microrobot along the desired trajectory as well as minimize fluctuations of the actuators length.


Sign in / Sign up

Export Citation Format

Share Document